Mixed-Integer Linear Programming for Optimal Scheduling of Autonomous Vehicle Intersection Crossing
We propose an urban traffic management scheme for an all connected vehicle environment. If all the vehicles are autonomous, for example, in smart city projects or future's dense city centers, then such an environment does not need a physical traffic signal. Instead, an intersection control serv...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent vehicles 2018-09, Vol.3 (3), p.287-299 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | 3 |
container_start_page | 287 |
container_title | IEEE transactions on intelligent vehicles |
container_volume | 3 |
creator | Fayazi, Seyed Alireza Vahidi, Ardalan |
description | We propose an urban traffic management scheme for an all connected vehicle environment. If all the vehicles are autonomous, for example, in smart city projects or future's dense city centers, then such an environment does not need a physical traffic signal. Instead, an intersection control server processes data streams from approaching vehicles, periodically solves an optimization problem, and assigns to each vehicle an optimal arrival time that ensures safety while significantly reducing number of stops and intersection delays. The scheduling problem is formulated as a mixed-integer linear program (MILP), and is solved by IBM CPLEX optimization package. The optimization outputs (scheduled access/arrival times) are sent to all approaching vehicles. The autonomous vehicles adjust their speed accordingly by a proposed trajectory planning algorithm with the aim of accessing the intersection at their scheduled times. A customized traffic microsimulation environment is developed to determine the potentials of the proposed solution in comparison to two baseline scenarios. In addition, the proposed MILP-based intersection control scheme is modified and simulated for a mixed traffic consisting of autonomous and human-controlled vehicles, all connected through a wireless communication to the intersection controller of a signalized intersection. |
doi_str_mv | 10.1109/TIV.2018.2843163 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2299148126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8370718</ieee_id><sourcerecordid>2299148126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-6482c10d097fe893eb7dfd3065fd17688501d48266eb4e968cd79b9e66bd91e63</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsNTeBS8LnlP3I92PYylqC5UK1l6XZHfSpiTZupuA_vcmtHqaYfi9mTcPoXtKppQS_bRd7aaMUDVlKuVU8Cs0YlzqRGmSXv_1aqZu0STGIyGECsUU0SNk38pvcMmqaWEPAa_LBrKA34Pfh6yuy2aPCx_w5tSWdVbhD3sA11XD2Bd43rW-8bXvIt7BobQV4GFPiGDb0jd4EXyMPXuHboqsijC51DH6fHneLpbJevO6WszXieUz2SYiVcxS4oiWBSjNIZeucJyIWeGoFL1_Ql3PCAF5Cloo66TONQiRO01B8DF6PO89Bf_VQWzN0Xeh6U8axrSmqaJsoMiZsoO9AIU5hf658GMoMUOapk_TDGmaS5q95OEsKQHgH1dcEkkV_wU6HHD7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299148126</pqid></control><display><type>article</type><title>Mixed-Integer Linear Programming for Optimal Scheduling of Autonomous Vehicle Intersection Crossing</title><source>IEEE Electronic Library (IEL)</source><creator>Fayazi, Seyed Alireza ; Vahidi, Ardalan</creator><creatorcontrib>Fayazi, Seyed Alireza ; Vahidi, Ardalan</creatorcontrib><description>We propose an urban traffic management scheme for an all connected vehicle environment. If all the vehicles are autonomous, for example, in smart city projects or future's dense city centers, then such an environment does not need a physical traffic signal. Instead, an intersection control server processes data streams from approaching vehicles, periodically solves an optimization problem, and assigns to each vehicle an optimal arrival time that ensures safety while significantly reducing number of stops and intersection delays. The scheduling problem is formulated as a mixed-integer linear program (MILP), and is solved by IBM CPLEX optimization package. The optimization outputs (scheduled access/arrival times) are sent to all approaching vehicles. The autonomous vehicles adjust their speed accordingly by a proposed trajectory planning algorithm with the aim of accessing the intersection at their scheduled times. A customized traffic microsimulation environment is developed to determine the potentials of the proposed solution in comparison to two baseline scenarios. In addition, the proposed MILP-based intersection control scheme is modified and simulated for a mixed traffic consisting of autonomous and human-controlled vehicles, all connected through a wireless communication to the intersection controller of a signalized intersection.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2018.2843163</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous vehicles ; Computer simulation ; connected and autonomous vehicles ; Data transmission ; Integer programming ; Integers ; Intelligent transportation systems ; intersection traffic management ; Linear programming ; mixed integer linear program ; Optimal scheduling ; Optimization ; Production scheduling ; Safety ; Scheduling ; Servers ; Signal processing ; Timing ; Traffic intersections ; Traffic management ; Traffic signals ; traffic simulation and modeling ; Trajectory ; Trajectory planning ; Vehicles ; Wireless communications</subject><ispartof>IEEE transactions on intelligent vehicles, 2018-09, Vol.3 (3), p.287-299</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-6482c10d097fe893eb7dfd3065fd17688501d48266eb4e968cd79b9e66bd91e63</citedby><cites>FETCH-LOGICAL-c357t-6482c10d097fe893eb7dfd3065fd17688501d48266eb4e968cd79b9e66bd91e63</cites><orcidid>0000-0002-1669-3345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8370718$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8370718$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fayazi, Seyed Alireza</creatorcontrib><creatorcontrib>Vahidi, Ardalan</creatorcontrib><title>Mixed-Integer Linear Programming for Optimal Scheduling of Autonomous Vehicle Intersection Crossing</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>We propose an urban traffic management scheme for an all connected vehicle environment. If all the vehicles are autonomous, for example, in smart city projects or future's dense city centers, then such an environment does not need a physical traffic signal. Instead, an intersection control server processes data streams from approaching vehicles, periodically solves an optimization problem, and assigns to each vehicle an optimal arrival time that ensures safety while significantly reducing number of stops and intersection delays. The scheduling problem is formulated as a mixed-integer linear program (MILP), and is solved by IBM CPLEX optimization package. The optimization outputs (scheduled access/arrival times) are sent to all approaching vehicles. The autonomous vehicles adjust their speed accordingly by a proposed trajectory planning algorithm with the aim of accessing the intersection at their scheduled times. A customized traffic microsimulation environment is developed to determine the potentials of the proposed solution in comparison to two baseline scenarios. In addition, the proposed MILP-based intersection control scheme is modified and simulated for a mixed traffic consisting of autonomous and human-controlled vehicles, all connected through a wireless communication to the intersection controller of a signalized intersection.</description><subject>Algorithms</subject><subject>Autonomous vehicles</subject><subject>Computer simulation</subject><subject>connected and autonomous vehicles</subject><subject>Data transmission</subject><subject>Integer programming</subject><subject>Integers</subject><subject>Intelligent transportation systems</subject><subject>intersection traffic management</subject><subject>Linear programming</subject><subject>mixed integer linear program</subject><subject>Optimal scheduling</subject><subject>Optimization</subject><subject>Production scheduling</subject><subject>Safety</subject><subject>Scheduling</subject><subject>Servers</subject><subject>Signal processing</subject><subject>Timing</subject><subject>Traffic intersections</subject><subject>Traffic management</subject><subject>Traffic signals</subject><subject>traffic simulation and modeling</subject><subject>Trajectory</subject><subject>Trajectory planning</subject><subject>Vehicles</subject><subject>Wireless communications</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsNTeBS8LnlP3I92PYylqC5UK1l6XZHfSpiTZupuA_vcmtHqaYfi9mTcPoXtKppQS_bRd7aaMUDVlKuVU8Cs0YlzqRGmSXv_1aqZu0STGIyGECsUU0SNk38pvcMmqaWEPAa_LBrKA34Pfh6yuy2aPCx_w5tSWdVbhD3sA11XD2Bd43rW-8bXvIt7BobQV4GFPiGDb0jd4EXyMPXuHboqsijC51DH6fHneLpbJevO6WszXieUz2SYiVcxS4oiWBSjNIZeucJyIWeGoFL1_Ql3PCAF5Cloo66TONQiRO01B8DF6PO89Bf_VQWzN0Xeh6U8axrSmqaJsoMiZsoO9AIU5hf658GMoMUOapk_TDGmaS5q95OEsKQHgH1dcEkkV_wU6HHD7</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Fayazi, Seyed Alireza</creator><creator>Vahidi, Ardalan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1669-3345</orcidid></search><sort><creationdate>20180901</creationdate><title>Mixed-Integer Linear Programming for Optimal Scheduling of Autonomous Vehicle Intersection Crossing</title><author>Fayazi, Seyed Alireza ; Vahidi, Ardalan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-6482c10d097fe893eb7dfd3065fd17688501d48266eb4e968cd79b9e66bd91e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Autonomous vehicles</topic><topic>Computer simulation</topic><topic>connected and autonomous vehicles</topic><topic>Data transmission</topic><topic>Integer programming</topic><topic>Integers</topic><topic>Intelligent transportation systems</topic><topic>intersection traffic management</topic><topic>Linear programming</topic><topic>mixed integer linear program</topic><topic>Optimal scheduling</topic><topic>Optimization</topic><topic>Production scheduling</topic><topic>Safety</topic><topic>Scheduling</topic><topic>Servers</topic><topic>Signal processing</topic><topic>Timing</topic><topic>Traffic intersections</topic><topic>Traffic management</topic><topic>Traffic signals</topic><topic>traffic simulation and modeling</topic><topic>Trajectory</topic><topic>Trajectory planning</topic><topic>Vehicles</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fayazi, Seyed Alireza</creatorcontrib><creatorcontrib>Vahidi, Ardalan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fayazi, Seyed Alireza</au><au>Vahidi, Ardalan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed-Integer Linear Programming for Optimal Scheduling of Autonomous Vehicle Intersection Crossing</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>3</volume><issue>3</issue><spage>287</spage><epage>299</epage><pages>287-299</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>We propose an urban traffic management scheme for an all connected vehicle environment. If all the vehicles are autonomous, for example, in smart city projects or future's dense city centers, then such an environment does not need a physical traffic signal. Instead, an intersection control server processes data streams from approaching vehicles, periodically solves an optimization problem, and assigns to each vehicle an optimal arrival time that ensures safety while significantly reducing number of stops and intersection delays. The scheduling problem is formulated as a mixed-integer linear program (MILP), and is solved by IBM CPLEX optimization package. The optimization outputs (scheduled access/arrival times) are sent to all approaching vehicles. The autonomous vehicles adjust their speed accordingly by a proposed trajectory planning algorithm with the aim of accessing the intersection at their scheduled times. A customized traffic microsimulation environment is developed to determine the potentials of the proposed solution in comparison to two baseline scenarios. In addition, the proposed MILP-based intersection control scheme is modified and simulated for a mixed traffic consisting of autonomous and human-controlled vehicles, all connected through a wireless communication to the intersection controller of a signalized intersection.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2018.2843163</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1669-3345</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-8858 |
ispartof | IEEE transactions on intelligent vehicles, 2018-09, Vol.3 (3), p.287-299 |
issn | 2379-8858 2379-8904 |
language | eng |
recordid | cdi_proquest_journals_2299148126 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Autonomous vehicles Computer simulation connected and autonomous vehicles Data transmission Integer programming Integers Intelligent transportation systems intersection traffic management Linear programming mixed integer linear program Optimal scheduling Optimization Production scheduling Safety Scheduling Servers Signal processing Timing Traffic intersections Traffic management Traffic signals traffic simulation and modeling Trajectory Trajectory planning Vehicles Wireless communications |
title | Mixed-Integer Linear Programming for Optimal Scheduling of Autonomous Vehicle Intersection Crossing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed-Integer%20Linear%20Programming%20for%20Optimal%20Scheduling%20of%20Autonomous%20Vehicle%20Intersection%20Crossing&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Fayazi,%20Seyed%20Alireza&rft.date=2018-09-01&rft.volume=3&rft.issue=3&rft.spage=287&rft.epage=299&rft.pages=287-299&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2018.2843163&rft_dat=%3Cproquest_RIE%3E2299148126%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299148126&rft_id=info:pmid/&rft_ieee_id=8370718&rfr_iscdi=true |