Mixed-Integer Linear Programming for Optimal Scheduling of Autonomous Vehicle Intersection Crossing

We propose an urban traffic management scheme for an all connected vehicle environment. If all the vehicles are autonomous, for example, in smart city projects or future's dense city centers, then such an environment does not need a physical traffic signal. Instead, an intersection control serv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent vehicles 2018-09, Vol.3 (3), p.287-299
Hauptverfasser: Fayazi, Seyed Alireza, Vahidi, Ardalan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 3
container_start_page 287
container_title IEEE transactions on intelligent vehicles
container_volume 3
creator Fayazi, Seyed Alireza
Vahidi, Ardalan
description We propose an urban traffic management scheme for an all connected vehicle environment. If all the vehicles are autonomous, for example, in smart city projects or future's dense city centers, then such an environment does not need a physical traffic signal. Instead, an intersection control server processes data streams from approaching vehicles, periodically solves an optimization problem, and assigns to each vehicle an optimal arrival time that ensures safety while significantly reducing number of stops and intersection delays. The scheduling problem is formulated as a mixed-integer linear program (MILP), and is solved by IBM CPLEX optimization package. The optimization outputs (scheduled access/arrival times) are sent to all approaching vehicles. The autonomous vehicles adjust their speed accordingly by a proposed trajectory planning algorithm with the aim of accessing the intersection at their scheduled times. A customized traffic microsimulation environment is developed to determine the potentials of the proposed solution in comparison to two baseline scenarios. In addition, the proposed MILP-based intersection control scheme is modified and simulated for a mixed traffic consisting of autonomous and human-controlled vehicles, all connected through a wireless communication to the intersection controller of a signalized intersection.
doi_str_mv 10.1109/TIV.2018.2843163
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2299148126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8370718</ieee_id><sourcerecordid>2299148126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-6482c10d097fe893eb7dfd3065fd17688501d48266eb4e968cd79b9e66bd91e63</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsNTeBS8LnlP3I92PYylqC5UK1l6XZHfSpiTZupuA_vcmtHqaYfi9mTcPoXtKppQS_bRd7aaMUDVlKuVU8Cs0YlzqRGmSXv_1aqZu0STGIyGECsUU0SNk38pvcMmqaWEPAa_LBrKA34Pfh6yuy2aPCx_w5tSWdVbhD3sA11XD2Bd43rW-8bXvIt7BobQV4GFPiGDb0jd4EXyMPXuHboqsijC51DH6fHneLpbJevO6WszXieUz2SYiVcxS4oiWBSjNIZeucJyIWeGoFL1_Ql3PCAF5Cloo66TONQiRO01B8DF6PO89Bf_VQWzN0Xeh6U8axrSmqaJsoMiZsoO9AIU5hf658GMoMUOapk_TDGmaS5q95OEsKQHgH1dcEkkV_wU6HHD7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299148126</pqid></control><display><type>article</type><title>Mixed-Integer Linear Programming for Optimal Scheduling of Autonomous Vehicle Intersection Crossing</title><source>IEEE Electronic Library (IEL)</source><creator>Fayazi, Seyed Alireza ; Vahidi, Ardalan</creator><creatorcontrib>Fayazi, Seyed Alireza ; Vahidi, Ardalan</creatorcontrib><description>We propose an urban traffic management scheme for an all connected vehicle environment. If all the vehicles are autonomous, for example, in smart city projects or future's dense city centers, then such an environment does not need a physical traffic signal. Instead, an intersection control server processes data streams from approaching vehicles, periodically solves an optimization problem, and assigns to each vehicle an optimal arrival time that ensures safety while significantly reducing number of stops and intersection delays. The scheduling problem is formulated as a mixed-integer linear program (MILP), and is solved by IBM CPLEX optimization package. The optimization outputs (scheduled access/arrival times) are sent to all approaching vehicles. The autonomous vehicles adjust their speed accordingly by a proposed trajectory planning algorithm with the aim of accessing the intersection at their scheduled times. A customized traffic microsimulation environment is developed to determine the potentials of the proposed solution in comparison to two baseline scenarios. In addition, the proposed MILP-based intersection control scheme is modified and simulated for a mixed traffic consisting of autonomous and human-controlled vehicles, all connected through a wireless communication to the intersection controller of a signalized intersection.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2018.2843163</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Autonomous vehicles ; Computer simulation ; connected and autonomous vehicles ; Data transmission ; Integer programming ; Integers ; Intelligent transportation systems ; intersection traffic management ; Linear programming ; mixed integer linear program ; Optimal scheduling ; Optimization ; Production scheduling ; Safety ; Scheduling ; Servers ; Signal processing ; Timing ; Traffic intersections ; Traffic management ; Traffic signals ; traffic simulation and modeling ; Trajectory ; Trajectory planning ; Vehicles ; Wireless communications</subject><ispartof>IEEE transactions on intelligent vehicles, 2018-09, Vol.3 (3), p.287-299</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-6482c10d097fe893eb7dfd3065fd17688501d48266eb4e968cd79b9e66bd91e63</citedby><cites>FETCH-LOGICAL-c357t-6482c10d097fe893eb7dfd3065fd17688501d48266eb4e968cd79b9e66bd91e63</cites><orcidid>0000-0002-1669-3345</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8370718$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8370718$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fayazi, Seyed Alireza</creatorcontrib><creatorcontrib>Vahidi, Ardalan</creatorcontrib><title>Mixed-Integer Linear Programming for Optimal Scheduling of Autonomous Vehicle Intersection Crossing</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>We propose an urban traffic management scheme for an all connected vehicle environment. If all the vehicles are autonomous, for example, in smart city projects or future's dense city centers, then such an environment does not need a physical traffic signal. Instead, an intersection control server processes data streams from approaching vehicles, periodically solves an optimization problem, and assigns to each vehicle an optimal arrival time that ensures safety while significantly reducing number of stops and intersection delays. The scheduling problem is formulated as a mixed-integer linear program (MILP), and is solved by IBM CPLEX optimization package. The optimization outputs (scheduled access/arrival times) are sent to all approaching vehicles. The autonomous vehicles adjust their speed accordingly by a proposed trajectory planning algorithm with the aim of accessing the intersection at their scheduled times. A customized traffic microsimulation environment is developed to determine the potentials of the proposed solution in comparison to two baseline scenarios. In addition, the proposed MILP-based intersection control scheme is modified and simulated for a mixed traffic consisting of autonomous and human-controlled vehicles, all connected through a wireless communication to the intersection controller of a signalized intersection.</description><subject>Algorithms</subject><subject>Autonomous vehicles</subject><subject>Computer simulation</subject><subject>connected and autonomous vehicles</subject><subject>Data transmission</subject><subject>Integer programming</subject><subject>Integers</subject><subject>Intelligent transportation systems</subject><subject>intersection traffic management</subject><subject>Linear programming</subject><subject>mixed integer linear program</subject><subject>Optimal scheduling</subject><subject>Optimization</subject><subject>Production scheduling</subject><subject>Safety</subject><subject>Scheduling</subject><subject>Servers</subject><subject>Signal processing</subject><subject>Timing</subject><subject>Traffic intersections</subject><subject>Traffic management</subject><subject>Traffic signals</subject><subject>traffic simulation and modeling</subject><subject>Trajectory</subject><subject>Trajectory planning</subject><subject>Vehicles</subject><subject>Wireless communications</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsNTeBS8LnlP3I92PYylqC5UK1l6XZHfSpiTZupuA_vcmtHqaYfi9mTcPoXtKppQS_bRd7aaMUDVlKuVU8Cs0YlzqRGmSXv_1aqZu0STGIyGECsUU0SNk38pvcMmqaWEPAa_LBrKA34Pfh6yuy2aPCx_w5tSWdVbhD3sA11XD2Bd43rW-8bXvIt7BobQV4GFPiGDb0jd4EXyMPXuHboqsijC51DH6fHneLpbJevO6WszXieUz2SYiVcxS4oiWBSjNIZeucJyIWeGoFL1_Ql3PCAF5Cloo66TONQiRO01B8DF6PO89Bf_VQWzN0Xeh6U8axrSmqaJsoMiZsoO9AIU5hf658GMoMUOapk_TDGmaS5q95OEsKQHgH1dcEkkV_wU6HHD7</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Fayazi, Seyed Alireza</creator><creator>Vahidi, Ardalan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1669-3345</orcidid></search><sort><creationdate>20180901</creationdate><title>Mixed-Integer Linear Programming for Optimal Scheduling of Autonomous Vehicle Intersection Crossing</title><author>Fayazi, Seyed Alireza ; Vahidi, Ardalan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-6482c10d097fe893eb7dfd3065fd17688501d48266eb4e968cd79b9e66bd91e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Autonomous vehicles</topic><topic>Computer simulation</topic><topic>connected and autonomous vehicles</topic><topic>Data transmission</topic><topic>Integer programming</topic><topic>Integers</topic><topic>Intelligent transportation systems</topic><topic>intersection traffic management</topic><topic>Linear programming</topic><topic>mixed integer linear program</topic><topic>Optimal scheduling</topic><topic>Optimization</topic><topic>Production scheduling</topic><topic>Safety</topic><topic>Scheduling</topic><topic>Servers</topic><topic>Signal processing</topic><topic>Timing</topic><topic>Traffic intersections</topic><topic>Traffic management</topic><topic>Traffic signals</topic><topic>traffic simulation and modeling</topic><topic>Trajectory</topic><topic>Trajectory planning</topic><topic>Vehicles</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fayazi, Seyed Alireza</creatorcontrib><creatorcontrib>Vahidi, Ardalan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fayazi, Seyed Alireza</au><au>Vahidi, Ardalan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed-Integer Linear Programming for Optimal Scheduling of Autonomous Vehicle Intersection Crossing</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>3</volume><issue>3</issue><spage>287</spage><epage>299</epage><pages>287-299</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>We propose an urban traffic management scheme for an all connected vehicle environment. If all the vehicles are autonomous, for example, in smart city projects or future's dense city centers, then such an environment does not need a physical traffic signal. Instead, an intersection control server processes data streams from approaching vehicles, periodically solves an optimization problem, and assigns to each vehicle an optimal arrival time that ensures safety while significantly reducing number of stops and intersection delays. The scheduling problem is formulated as a mixed-integer linear program (MILP), and is solved by IBM CPLEX optimization package. The optimization outputs (scheduled access/arrival times) are sent to all approaching vehicles. The autonomous vehicles adjust their speed accordingly by a proposed trajectory planning algorithm with the aim of accessing the intersection at their scheduled times. A customized traffic microsimulation environment is developed to determine the potentials of the proposed solution in comparison to two baseline scenarios. In addition, the proposed MILP-based intersection control scheme is modified and simulated for a mixed traffic consisting of autonomous and human-controlled vehicles, all connected through a wireless communication to the intersection controller of a signalized intersection.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2018.2843163</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1669-3345</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-8858
ispartof IEEE transactions on intelligent vehicles, 2018-09, Vol.3 (3), p.287-299
issn 2379-8858
2379-8904
language eng
recordid cdi_proquest_journals_2299148126
source IEEE Electronic Library (IEL)
subjects Algorithms
Autonomous vehicles
Computer simulation
connected and autonomous vehicles
Data transmission
Integer programming
Integers
Intelligent transportation systems
intersection traffic management
Linear programming
mixed integer linear program
Optimal scheduling
Optimization
Production scheduling
Safety
Scheduling
Servers
Signal processing
Timing
Traffic intersections
Traffic management
Traffic signals
traffic simulation and modeling
Trajectory
Trajectory planning
Vehicles
Wireless communications
title Mixed-Integer Linear Programming for Optimal Scheduling of Autonomous Vehicle Intersection Crossing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed-Integer%20Linear%20Programming%20for%20Optimal%20Scheduling%20of%20Autonomous%20Vehicle%20Intersection%20Crossing&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Fayazi,%20Seyed%20Alireza&rft.date=2018-09-01&rft.volume=3&rft.issue=3&rft.spage=287&rft.epage=299&rft.pages=287-299&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2018.2843163&rft_dat=%3Cproquest_RIE%3E2299148126%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299148126&rft_id=info:pmid/&rft_ieee_id=8370718&rfr_iscdi=true