Refined best reply correspondence and dynamics

We call a correspondence, defined on the set of mixed strategy pro les, a generalized best reply correspondence if it (1) has a product structure, (2) is upper hemi-continuous, (3) always includes a best reply to any mixed strategy pro le, and (4) is convex- and closed-valued. For each generalized b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical economics 2013, Vol.8 (1), p.165-192
Hauptverfasser: Kuzmics, Christoph, Balkenborg, Dieter, Hofbauer, Josef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 1
container_start_page 165
container_title Theoretical economics
container_volume 8
creator Kuzmics, Christoph
Balkenborg, Dieter
Hofbauer, Josef
description We call a correspondence, defined on the set of mixed strategy pro les, a generalized best reply correspondence if it (1) has a product structure, (2) is upper hemi-continuous, (3) always includes a best reply to any mixed strategy pro le, and (4) is convex- and closed-valued. For each generalized best reply correspondence, we defi ne a generalized best reply dynamics as a differential inclusion based on it. We call a face of the set of mixed strategy profi les a minimally asymptotically stable face (MASF) if it is asymptotically stable under some such dynamics and no subface of it is asymptotically stable under any such dynamics. The set of such correspondences (and dynamics) is endowed with the partial order of point-wise set inclusion and, under a mild condition on the normal form of the game at hand, forms a complete lattice with meets based on point-wise intersections. The refined best reply correspondence is then defined as the smallest element of the set of all generalized best reply correspondences. We find that every persistent retract (Kalai and Samet 1984) contains an MASF. Furthermore, persistent retracts are minimal CURB sets (Basu and Weibull 1991) based on the refi ned best reply correspondence. Conversely, every MASF must be a prep set (Voorneveld 2004), based again, however, on the refined best reply correspondence.
doi_str_mv 10.3982/TE652
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_journals_2299135365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299135365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4888-f176342f9bc12423f0b3b57c5534ca4956ac613ebc08f72ff37271082dfbed5b3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbanyAuiAcPW_M1m-xRSmuFgiD1HDbZBLa0mzVpkf33pq6IgjiXmcPDO8MgNCF4ykpJ79fzAugJGhEAyAUU5PTHfI4uYtxgzFOREZq-WNe0ts60jfss2G7bZ8aHYGPn29q2xmZVW2d131a7xsRLdOaqbbSTrz5Gr4v5erbMV8-PT7OHVW64lDJ3RBSMU1dqQyinzGHNNAgDwLipeAlFZQrCrDZYOkGdY4IKgiWtnbY1aDZGN0NuF_zbIZ2mNv4Q2rRSUVqWhAEr4D9FUp6EEiRN6nZQJvgYg3WqC82uCr0iWB0fpj4fltz14KzxbRO_lSw5pQRzlsTdIN6bre3_jlHr5XwmZLJXv9KOLe59UAQwkZJ9AJ-aezU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1271859582</pqid></control><display><type>article</type><title>Refined best reply correspondence and dynamics</title><source>Wiley Online Library (Open Access Collection)</source><creator>Kuzmics, Christoph ; Balkenborg, Dieter ; Hofbauer, Josef</creator><creatorcontrib>Kuzmics, Christoph ; Balkenborg, Dieter ; Hofbauer, Josef</creatorcontrib><description>We call a correspondence, defined on the set of mixed strategy pro les, a generalized best reply correspondence if it (1) has a product structure, (2) is upper hemi-continuous, (3) always includes a best reply to any mixed strategy pro le, and (4) is convex- and closed-valued. For each generalized best reply correspondence, we defi ne a generalized best reply dynamics as a differential inclusion based on it. We call a face of the set of mixed strategy profi les a minimally asymptotically stable face (MASF) if it is asymptotically stable under some such dynamics and no subface of it is asymptotically stable under any such dynamics. The set of such correspondences (and dynamics) is endowed with the partial order of point-wise set inclusion and, under a mild condition on the normal form of the game at hand, forms a complete lattice with meets based on point-wise intersections. The refined best reply correspondence is then defined as the smallest element of the set of all generalized best reply correspondences. We find that every persistent retract (Kalai and Samet 1984) contains an MASF. Furthermore, persistent retracts are minimal CURB sets (Basu and Weibull 1991) based on the refi ned best reply correspondence. Conversely, every MASF must be a prep set (Voorneveld 2004), based again, however, on the refined best reply correspondence.</description><identifier>ISSN: 1555-7561</identifier><identifier>ISSN: 1933-6837</identifier><identifier>EISSN: 1555-7561</identifier><identifier>DOI: 10.3982/TE652</identifier><language>eng</language><publisher>New Haven, CT: The Econometric Society</publisher><subject>asymptotic stability ; best response dynamics ; C62 ; C72 ; C73 ; Correspondence ; CURB sets ; Economic theory ; Equilibrium ; Evolutionary game theory ; learning ; Nash equilibrium refinements ; persistent retracts ; Population</subject><ispartof>Theoretical economics, 2013, Vol.8 (1), p.165-192</ispartof><rights>Copyright © 2013 Dieter Balkenborg, Josef Hofbauer, and Christoph Kuzmics</rights><rights>Copyright John Wiley &amp; Sons, Inc. Jan 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4888-f176342f9bc12423f0b3b57c5534ca4956ac613ebc08f72ff37271082dfbed5b3</citedby><cites>FETCH-LOGICAL-c4888-f176342f9bc12423f0b3b57c5534ca4956ac613ebc08f72ff37271082dfbed5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.3982%2FTE652$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.3982%2FTE652$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,4024,11562,27923,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.3982%2FTE652$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Kuzmics, Christoph</creatorcontrib><creatorcontrib>Balkenborg, Dieter</creatorcontrib><creatorcontrib>Hofbauer, Josef</creatorcontrib><title>Refined best reply correspondence and dynamics</title><title>Theoretical economics</title><description>We call a correspondence, defined on the set of mixed strategy pro les, a generalized best reply correspondence if it (1) has a product structure, (2) is upper hemi-continuous, (3) always includes a best reply to any mixed strategy pro le, and (4) is convex- and closed-valued. For each generalized best reply correspondence, we defi ne a generalized best reply dynamics as a differential inclusion based on it. We call a face of the set of mixed strategy profi les a minimally asymptotically stable face (MASF) if it is asymptotically stable under some such dynamics and no subface of it is asymptotically stable under any such dynamics. The set of such correspondences (and dynamics) is endowed with the partial order of point-wise set inclusion and, under a mild condition on the normal form of the game at hand, forms a complete lattice with meets based on point-wise intersections. The refined best reply correspondence is then defined as the smallest element of the set of all generalized best reply correspondences. We find that every persistent retract (Kalai and Samet 1984) contains an MASF. Furthermore, persistent retracts are minimal CURB sets (Basu and Weibull 1991) based on the refi ned best reply correspondence. Conversely, every MASF must be a prep set (Voorneveld 2004), based again, however, on the refined best reply correspondence.</description><subject>asymptotic stability</subject><subject>best response dynamics</subject><subject>C62</subject><subject>C72</subject><subject>C73</subject><subject>Correspondence</subject><subject>CURB sets</subject><subject>Economic theory</subject><subject>Equilibrium</subject><subject>Evolutionary game theory</subject><subject>learning</subject><subject>Nash equilibrium refinements</subject><subject>persistent retracts</subject><subject>Population</subject><issn>1555-7561</issn><issn>1933-6837</issn><issn>1555-7561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp90E1LAzEQBuAgCtbanyAuiAcPW_M1m-xRSmuFgiD1HDbZBLa0mzVpkf33pq6IgjiXmcPDO8MgNCF4ykpJ79fzAugJGhEAyAUU5PTHfI4uYtxgzFOREZq-WNe0ts60jfss2G7bZ8aHYGPn29q2xmZVW2d131a7xsRLdOaqbbSTrz5Gr4v5erbMV8-PT7OHVW64lDJ3RBSMU1dqQyinzGHNNAgDwLipeAlFZQrCrDZYOkGdY4IKgiWtnbY1aDZGN0NuF_zbIZ2mNv4Q2rRSUVqWhAEr4D9FUp6EEiRN6nZQJvgYg3WqC82uCr0iWB0fpj4fltz14KzxbRO_lSw5pQRzlsTdIN6bre3_jlHr5XwmZLJXv9KOLe59UAQwkZJ9AJ-aezU</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Kuzmics, Christoph</creator><creator>Balkenborg, Dieter</creator><creator>Hofbauer, Josef</creator><general>The Econometric Society</general><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><scope>OT2</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>2013</creationdate><title>Refined best reply correspondence and dynamics</title><author>Kuzmics, Christoph ; Balkenborg, Dieter ; Hofbauer, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4888-f176342f9bc12423f0b3b57c5534ca4956ac613ebc08f72ff37271082dfbed5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>asymptotic stability</topic><topic>best response dynamics</topic><topic>C62</topic><topic>C72</topic><topic>C73</topic><topic>Correspondence</topic><topic>CURB sets</topic><topic>Economic theory</topic><topic>Equilibrium</topic><topic>Evolutionary game theory</topic><topic>learning</topic><topic>Nash equilibrium refinements</topic><topic>persistent retracts</topic><topic>Population</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuzmics, Christoph</creatorcontrib><creatorcontrib>Balkenborg, Dieter</creatorcontrib><creatorcontrib>Hofbauer, Josef</creatorcontrib><collection>EconStor</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Theoretical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuzmics, Christoph</au><au>Balkenborg, Dieter</au><au>Hofbauer, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refined best reply correspondence and dynamics</atitle><jtitle>Theoretical economics</jtitle><date>2013</date><risdate>2013</risdate><volume>8</volume><issue>1</issue><spage>165</spage><epage>192</epage><pages>165-192</pages><issn>1555-7561</issn><issn>1933-6837</issn><eissn>1555-7561</eissn><abstract>We call a correspondence, defined on the set of mixed strategy pro les, a generalized best reply correspondence if it (1) has a product structure, (2) is upper hemi-continuous, (3) always includes a best reply to any mixed strategy pro le, and (4) is convex- and closed-valued. For each generalized best reply correspondence, we defi ne a generalized best reply dynamics as a differential inclusion based on it. We call a face of the set of mixed strategy profi les a minimally asymptotically stable face (MASF) if it is asymptotically stable under some such dynamics and no subface of it is asymptotically stable under any such dynamics. The set of such correspondences (and dynamics) is endowed with the partial order of point-wise set inclusion and, under a mild condition on the normal form of the game at hand, forms a complete lattice with meets based on point-wise intersections. The refined best reply correspondence is then defined as the smallest element of the set of all generalized best reply correspondences. We find that every persistent retract (Kalai and Samet 1984) contains an MASF. Furthermore, persistent retracts are minimal CURB sets (Basu and Weibull 1991) based on the refi ned best reply correspondence. Conversely, every MASF must be a prep set (Voorneveld 2004), based again, however, on the refined best reply correspondence.</abstract><cop>New Haven, CT</cop><pub>The Econometric Society</pub><doi>10.3982/TE652</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1555-7561
ispartof Theoretical economics, 2013, Vol.8 (1), p.165-192
issn 1555-7561
1933-6837
1555-7561
language eng
recordid cdi_proquest_journals_2299135365
source Wiley Online Library (Open Access Collection)
subjects asymptotic stability
best response dynamics
C62
C72
C73
Correspondence
CURB sets
Economic theory
Equilibrium
Evolutionary game theory
learning
Nash equilibrium refinements
persistent retracts
Population
title Refined best reply correspondence and dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refined%20best%20reply%20correspondence%20and%20dynamics&rft.jtitle=Theoretical%20economics&rft.au=Kuzmics,%20Christoph&rft.date=2013&rft.volume=8&rft.issue=1&rft.spage=165&rft.epage=192&rft.pages=165-192&rft.issn=1555-7561&rft.eissn=1555-7561&rft_id=info:doi/10.3982/TE652&rft_dat=%3Cproquest_24P%3E2299135365%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1271859582&rft_id=info:pmid/&rfr_iscdi=true