Soil respiration in a northeastern US temperate forest: a 22-year synthesis
To better understand how forest management, phenology, vegetation type, and actual and simulated climatic change affect seasonal and inter-annual variations in soil respiration ( R s ), we analyzed more than 100,000 individual measurements of soil respiration from 23 studies conducted over 22 years...
Gespeichert in:
Veröffentlicht in: | Ecosphere (Washington, D.C) D.C), 2013-11, Vol.4 (11), p.art140-28 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 11 |
container_start_page | art140 |
container_title | Ecosphere (Washington, D.C) |
container_volume | 4 |
creator | Giasson, M.-A Ellison, A. M Bowden, R. D Crill, P. M Davidson, E. A Drake, J. E Frey, S. D Hadley, J. L Lavine, M Melillo, J. M Munger, J. W Nadelhoffer, K. J Nicoll, L Ollinger, S. V Savage, K. E Steudler, P. A Tang, J Varner, R. K Wofsy, S. C Foster, D. R Finzi, A. C |
description | To better understand how forest management, phenology, vegetation type, and actual and simulated climatic change affect seasonal and inter-annual variations in soil respiration (
R
s
), we analyzed more than 100,000 individual measurements of soil respiration from 23 studies conducted over 22 years at the Harvard Forest in Petersham, Massachusetts, USA. We also used 24 site-years of eddy-covariance measurements from two Harvard Forest sites to examine the relationship between soil and ecosystem respiration (
R
e
).
R
s
was highly variable at all spatial (respiration collar to forest stand) and temporal (minutes to years) scales of measurement. The response of
R
s
to experimental manipulations mimicking aspects of global change or aimed at partitioning
R
s
into component fluxes ranged from −70% to +52%. The response appears to arise from variations in substrate availability induced by changes in the size of soil C pools and of belowground C fluxes or in environmental conditions. In some cases (e.g., logging, warming), the effect of experimental manipulations on
R
s
was transient, but in other cases the time series were not long enough to rule out long-term changes in respiration rates. Inter-annual variations in weather and phenology induced variation among annual
R
s
estimates of a magnitude similar to that of other drivers of global change (i.e., invasive insects, forest management practices, N deposition). At both eddy-covariance sites, aboveground respiration dominated
R
e
early in the growing season, whereas belowground respiration dominated later. Unusual aboveground respiration patterns-high apparent rates of respiration during winter and very low rates in mid-to-late summer-at the Environmental Measurement Site suggest either bias in
R
s
and
R
e
estimates caused by differences in the spatial scale of processes influencing fluxes, or that additional research on the hard-to-measure fluxes (e.g., wintertime
R
s
, unaccounted losses of CO
2
from eddy covariance sites), daytime and nighttime canopy respiration and its impacts on estimates of
R
e
, and independent measurements of flux partitioning (e.g., aboveground plant respiration, isotopic partitioning) may yield insight into the unusually high and low fluxes. Overall, however, this data-rich analysis identifies important seasonal and experimental variations in
R
s
and
R
e
and in the partitioning of
R
e
above- vs. belowground. |
doi_str_mv | 10.1890/ES13.00183.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_2299131894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299131894</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4891-90011e1c944f404fcae79d319f471526c00099d8bc665c78e7ae6cd83c373daf3</originalsourceid><addsrcrecordid>eNp90E1LwzAcBvAgCo65mx-gIHjRzry1TbyNOV9w4KHOa8jaRDO2piYts9_ebBXZQQyEJPDLn4cHgHMEx4hxeDPLERlDiBgZoyMwwCiBMeM4OT64n4KR9ysYVkIzRskAPOfWrCOnfG2cbIytIlNFMqqsaz6U9I1yVbTIo0ZtahWAirQNuLkNBuO4U9JFvquC9cafgRMt116Nfs4hWNzPXqeP8fzl4Wk6mceSMo5iHkIihQpOqaaQ6kKqjJcEcU0zlOC0CPE4L9mySNOkyJjKpEqLkpGCZKSUmgzBVT_Xb1XdLkXtzEa6TlhpxJ15mwjr3oVvBWcwZUFf9Lp29rMN2cXKtq4KAQXGnCMS2qNBXfeqcNZ7p_TvVATFrl-x61fs-xUo8LTnW7NW3b9WzKY5RmT_2n287D_KpqttJZSXYR_outSi-Wr-hH9G-Qbt4ZQO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299131894</pqid></control><display><type>article</type><title>Soil respiration in a northeastern US temperate forest: a 22-year synthesis</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><source>Wiley Online Library Open Access</source><creator>Giasson, M.-A ; Ellison, A. M ; Bowden, R. D ; Crill, P. M ; Davidson, E. A ; Drake, J. E ; Frey, S. D ; Hadley, J. L ; Lavine, M ; Melillo, J. M ; Munger, J. W ; Nadelhoffer, K. J ; Nicoll, L ; Ollinger, S. V ; Savage, K. E ; Steudler, P. A ; Tang, J ; Varner, R. K ; Wofsy, S. C ; Foster, D. R ; Finzi, A. C</creator><creatorcontrib>Giasson, M.-A ; Ellison, A. M ; Bowden, R. D ; Crill, P. M ; Davidson, E. A ; Drake, J. E ; Frey, S. D ; Hadley, J. L ; Lavine, M ; Melillo, J. M ; Munger, J. W ; Nadelhoffer, K. J ; Nicoll, L ; Ollinger, S. V ; Savage, K. E ; Steudler, P. A ; Tang, J ; Varner, R. K ; Wofsy, S. C ; Foster, D. R ; Finzi, A. C</creatorcontrib><description>To better understand how forest management, phenology, vegetation type, and actual and simulated climatic change affect seasonal and inter-annual variations in soil respiration (
R
s
), we analyzed more than 100,000 individual measurements of soil respiration from 23 studies conducted over 22 years at the Harvard Forest in Petersham, Massachusetts, USA. We also used 24 site-years of eddy-covariance measurements from two Harvard Forest sites to examine the relationship between soil and ecosystem respiration (
R
e
).
R
s
was highly variable at all spatial (respiration collar to forest stand) and temporal (minutes to years) scales of measurement. The response of
R
s
to experimental manipulations mimicking aspects of global change or aimed at partitioning
R
s
into component fluxes ranged from −70% to +52%. The response appears to arise from variations in substrate availability induced by changes in the size of soil C pools and of belowground C fluxes or in environmental conditions. In some cases (e.g., logging, warming), the effect of experimental manipulations on
R
s
was transient, but in other cases the time series were not long enough to rule out long-term changes in respiration rates. Inter-annual variations in weather and phenology induced variation among annual
R
s
estimates of a magnitude similar to that of other drivers of global change (i.e., invasive insects, forest management practices, N deposition). At both eddy-covariance sites, aboveground respiration dominated
R
e
early in the growing season, whereas belowground respiration dominated later. Unusual aboveground respiration patterns-high apparent rates of respiration during winter and very low rates in mid-to-late summer-at the Environmental Measurement Site suggest either bias in
R
s
and
R
e
estimates caused by differences in the spatial scale of processes influencing fluxes, or that additional research on the hard-to-measure fluxes (e.g., wintertime
R
s
, unaccounted losses of CO
2
from eddy covariance sites), daytime and nighttime canopy respiration and its impacts on estimates of
R
e
, and independent measurements of flux partitioning (e.g., aboveground plant respiration, isotopic partitioning) may yield insight into the unusually high and low fluxes. Overall, however, this data-rich analysis identifies important seasonal and experimental variations in
R
s
and
R
e
and in the partitioning of
R
e
above- vs. belowground.</description><identifier>ISSN: 2150-8925</identifier><identifier>EISSN: 2150-8925</identifier><identifier>DOI: 10.1890/ES13.00183.1</identifier><language>eng</language><publisher>Washington: Ecological Society of America</publisher><subject>Annual variations ; Bias ; Carbon ; Carbon dioxide ; Climate change ; ecosystem respiration ; eddy covariance ; Environmental conditions ; flux partitioning ; Forest management ; Forest practices ; Forests ; Growing season ; Harvard Forest ; Invasive insects ; Invasive species ; Logging ; Phenology ; Photosynthesis ; Respiration ; soil respiration ; Soils ; Temperate forests ; Terrestrial ecosystems ; Winter</subject><ispartof>Ecosphere (Washington, D.C), 2013-11, Vol.4 (11), p.art140-28</ispartof><rights>Copyright: © 2013 Giasson et al.</rights><rights>2013. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4891-90011e1c944f404fcae79d319f471526c00099d8bc665c78e7ae6cd83c373daf3</citedby><cites>FETCH-LOGICAL-a4891-90011e1c944f404fcae79d319f471526c00099d8bc665c78e7ae6cd83c373daf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1890%2FES13.00183.1$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1890%2FES13.00183.1$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,551,777,781,861,882,1412,11543,27905,27906,45555,45556,46033,46457</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-98068$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Giasson, M.-A</creatorcontrib><creatorcontrib>Ellison, A. M</creatorcontrib><creatorcontrib>Bowden, R. D</creatorcontrib><creatorcontrib>Crill, P. M</creatorcontrib><creatorcontrib>Davidson, E. A</creatorcontrib><creatorcontrib>Drake, J. E</creatorcontrib><creatorcontrib>Frey, S. D</creatorcontrib><creatorcontrib>Hadley, J. L</creatorcontrib><creatorcontrib>Lavine, M</creatorcontrib><creatorcontrib>Melillo, J. M</creatorcontrib><creatorcontrib>Munger, J. W</creatorcontrib><creatorcontrib>Nadelhoffer, K. J</creatorcontrib><creatorcontrib>Nicoll, L</creatorcontrib><creatorcontrib>Ollinger, S. V</creatorcontrib><creatorcontrib>Savage, K. E</creatorcontrib><creatorcontrib>Steudler, P. A</creatorcontrib><creatorcontrib>Tang, J</creatorcontrib><creatorcontrib>Varner, R. K</creatorcontrib><creatorcontrib>Wofsy, S. C</creatorcontrib><creatorcontrib>Foster, D. R</creatorcontrib><creatorcontrib>Finzi, A. C</creatorcontrib><title>Soil respiration in a northeastern US temperate forest: a 22-year synthesis</title><title>Ecosphere (Washington, D.C)</title><description>To better understand how forest management, phenology, vegetation type, and actual and simulated climatic change affect seasonal and inter-annual variations in soil respiration (
R
s
), we analyzed more than 100,000 individual measurements of soil respiration from 23 studies conducted over 22 years at the Harvard Forest in Petersham, Massachusetts, USA. We also used 24 site-years of eddy-covariance measurements from two Harvard Forest sites to examine the relationship between soil and ecosystem respiration (
R
e
).
R
s
was highly variable at all spatial (respiration collar to forest stand) and temporal (minutes to years) scales of measurement. The response of
R
s
to experimental manipulations mimicking aspects of global change or aimed at partitioning
R
s
into component fluxes ranged from −70% to +52%. The response appears to arise from variations in substrate availability induced by changes in the size of soil C pools and of belowground C fluxes or in environmental conditions. In some cases (e.g., logging, warming), the effect of experimental manipulations on
R
s
was transient, but in other cases the time series were not long enough to rule out long-term changes in respiration rates. Inter-annual variations in weather and phenology induced variation among annual
R
s
estimates of a magnitude similar to that of other drivers of global change (i.e., invasive insects, forest management practices, N deposition). At both eddy-covariance sites, aboveground respiration dominated
R
e
early in the growing season, whereas belowground respiration dominated later. Unusual aboveground respiration patterns-high apparent rates of respiration during winter and very low rates in mid-to-late summer-at the Environmental Measurement Site suggest either bias in
R
s
and
R
e
estimates caused by differences in the spatial scale of processes influencing fluxes, or that additional research on the hard-to-measure fluxes (e.g., wintertime
R
s
, unaccounted losses of CO
2
from eddy covariance sites), daytime and nighttime canopy respiration and its impacts on estimates of
R
e
, and independent measurements of flux partitioning (e.g., aboveground plant respiration, isotopic partitioning) may yield insight into the unusually high and low fluxes. Overall, however, this data-rich analysis identifies important seasonal and experimental variations in
R
s
and
R
e
and in the partitioning of
R
e
above- vs. belowground.</description><subject>Annual variations</subject><subject>Bias</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Climate change</subject><subject>ecosystem respiration</subject><subject>eddy covariance</subject><subject>Environmental conditions</subject><subject>flux partitioning</subject><subject>Forest management</subject><subject>Forest practices</subject><subject>Forests</subject><subject>Growing season</subject><subject>Harvard Forest</subject><subject>Invasive insects</subject><subject>Invasive species</subject><subject>Logging</subject><subject>Phenology</subject><subject>Photosynthesis</subject><subject>Respiration</subject><subject>soil respiration</subject><subject>Soils</subject><subject>Temperate forests</subject><subject>Terrestrial ecosystems</subject><subject>Winter</subject><issn>2150-8925</issn><issn>2150-8925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>D8T</sourceid><recordid>eNp90E1LwzAcBvAgCo65mx-gIHjRzry1TbyNOV9w4KHOa8jaRDO2piYts9_ebBXZQQyEJPDLn4cHgHMEx4hxeDPLERlDiBgZoyMwwCiBMeM4OT64n4KR9ysYVkIzRskAPOfWrCOnfG2cbIytIlNFMqqsaz6U9I1yVbTIo0ZtahWAirQNuLkNBuO4U9JFvquC9cafgRMt116Nfs4hWNzPXqeP8fzl4Wk6mceSMo5iHkIihQpOqaaQ6kKqjJcEcU0zlOC0CPE4L9mySNOkyJjKpEqLkpGCZKSUmgzBVT_Xb1XdLkXtzEa6TlhpxJ15mwjr3oVvBWcwZUFf9Lp29rMN2cXKtq4KAQXGnCMS2qNBXfeqcNZ7p_TvVATFrl-x61fs-xUo8LTnW7NW3b9WzKY5RmT_2n287D_KpqttJZSXYR_outSi-Wr-hH9G-Qbt4ZQO</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Giasson, M.-A</creator><creator>Ellison, A. M</creator><creator>Bowden, R. D</creator><creator>Crill, P. M</creator><creator>Davidson, E. A</creator><creator>Drake, J. E</creator><creator>Frey, S. D</creator><creator>Hadley, J. L</creator><creator>Lavine, M</creator><creator>Melillo, J. M</creator><creator>Munger, J. W</creator><creator>Nadelhoffer, K. J</creator><creator>Nicoll, L</creator><creator>Ollinger, S. V</creator><creator>Savage, K. E</creator><creator>Steudler, P. A</creator><creator>Tang, J</creator><creator>Varner, R. K</creator><creator>Wofsy, S. C</creator><creator>Foster, D. R</creator><creator>Finzi, A. C</creator><general>Ecological Society of America</general><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope></search><sort><creationdate>201311</creationdate><title>Soil respiration in a northeastern US temperate forest: a 22-year synthesis</title><author>Giasson, M.-A ; Ellison, A. M ; Bowden, R. D ; Crill, P. M ; Davidson, E. A ; Drake, J. E ; Frey, S. D ; Hadley, J. L ; Lavine, M ; Melillo, J. M ; Munger, J. W ; Nadelhoffer, K. J ; Nicoll, L ; Ollinger, S. V ; Savage, K. E ; Steudler, P. A ; Tang, J ; Varner, R. K ; Wofsy, S. C ; Foster, D. R ; Finzi, A. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4891-90011e1c944f404fcae79d319f471526c00099d8bc665c78e7ae6cd83c373daf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Annual variations</topic><topic>Bias</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Climate change</topic><topic>ecosystem respiration</topic><topic>eddy covariance</topic><topic>Environmental conditions</topic><topic>flux partitioning</topic><topic>Forest management</topic><topic>Forest practices</topic><topic>Forests</topic><topic>Growing season</topic><topic>Harvard Forest</topic><topic>Invasive insects</topic><topic>Invasive species</topic><topic>Logging</topic><topic>Phenology</topic><topic>Photosynthesis</topic><topic>Respiration</topic><topic>soil respiration</topic><topic>Soils</topic><topic>Temperate forests</topic><topic>Terrestrial ecosystems</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giasson, M.-A</creatorcontrib><creatorcontrib>Ellison, A. M</creatorcontrib><creatorcontrib>Bowden, R. D</creatorcontrib><creatorcontrib>Crill, P. M</creatorcontrib><creatorcontrib>Davidson, E. A</creatorcontrib><creatorcontrib>Drake, J. E</creatorcontrib><creatorcontrib>Frey, S. D</creatorcontrib><creatorcontrib>Hadley, J. L</creatorcontrib><creatorcontrib>Lavine, M</creatorcontrib><creatorcontrib>Melillo, J. M</creatorcontrib><creatorcontrib>Munger, J. W</creatorcontrib><creatorcontrib>Nadelhoffer, K. J</creatorcontrib><creatorcontrib>Nicoll, L</creatorcontrib><creatorcontrib>Ollinger, S. V</creatorcontrib><creatorcontrib>Savage, K. E</creatorcontrib><creatorcontrib>Steudler, P. A</creatorcontrib><creatorcontrib>Tang, J</creatorcontrib><creatorcontrib>Varner, R. K</creatorcontrib><creatorcontrib>Wofsy, S. C</creatorcontrib><creatorcontrib>Foster, D. R</creatorcontrib><creatorcontrib>Finzi, A. C</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><jtitle>Ecosphere (Washington, D.C)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giasson, M.-A</au><au>Ellison, A. M</au><au>Bowden, R. D</au><au>Crill, P. M</au><au>Davidson, E. A</au><au>Drake, J. E</au><au>Frey, S. D</au><au>Hadley, J. L</au><au>Lavine, M</au><au>Melillo, J. M</au><au>Munger, J. W</au><au>Nadelhoffer, K. J</au><au>Nicoll, L</au><au>Ollinger, S. V</au><au>Savage, K. E</au><au>Steudler, P. A</au><au>Tang, J</au><au>Varner, R. K</au><au>Wofsy, S. C</au><au>Foster, D. R</au><au>Finzi, A. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil respiration in a northeastern US temperate forest: a 22-year synthesis</atitle><jtitle>Ecosphere (Washington, D.C)</jtitle><date>2013-11</date><risdate>2013</risdate><volume>4</volume><issue>11</issue><spage>art140</spage><epage>28</epage><pages>art140-28</pages><issn>2150-8925</issn><eissn>2150-8925</eissn><abstract>To better understand how forest management, phenology, vegetation type, and actual and simulated climatic change affect seasonal and inter-annual variations in soil respiration (
R
s
), we analyzed more than 100,000 individual measurements of soil respiration from 23 studies conducted over 22 years at the Harvard Forest in Petersham, Massachusetts, USA. We also used 24 site-years of eddy-covariance measurements from two Harvard Forest sites to examine the relationship between soil and ecosystem respiration (
R
e
).
R
s
was highly variable at all spatial (respiration collar to forest stand) and temporal (minutes to years) scales of measurement. The response of
R
s
to experimental manipulations mimicking aspects of global change or aimed at partitioning
R
s
into component fluxes ranged from −70% to +52%. The response appears to arise from variations in substrate availability induced by changes in the size of soil C pools and of belowground C fluxes or in environmental conditions. In some cases (e.g., logging, warming), the effect of experimental manipulations on
R
s
was transient, but in other cases the time series were not long enough to rule out long-term changes in respiration rates. Inter-annual variations in weather and phenology induced variation among annual
R
s
estimates of a magnitude similar to that of other drivers of global change (i.e., invasive insects, forest management practices, N deposition). At both eddy-covariance sites, aboveground respiration dominated
R
e
early in the growing season, whereas belowground respiration dominated later. Unusual aboveground respiration patterns-high apparent rates of respiration during winter and very low rates in mid-to-late summer-at the Environmental Measurement Site suggest either bias in
R
s
and
R
e
estimates caused by differences in the spatial scale of processes influencing fluxes, or that additional research on the hard-to-measure fluxes (e.g., wintertime
R
s
, unaccounted losses of CO
2
from eddy covariance sites), daytime and nighttime canopy respiration and its impacts on estimates of
R
e
, and independent measurements of flux partitioning (e.g., aboveground plant respiration, isotopic partitioning) may yield insight into the unusually high and low fluxes. Overall, however, this data-rich analysis identifies important seasonal and experimental variations in
R
s
and
R
e
and in the partitioning of
R
e
above- vs. belowground.</abstract><cop>Washington</cop><pub>Ecological Society of America</pub><doi>10.1890/ES13.00183.1</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2150-8925 |
ispartof | Ecosphere (Washington, D.C), 2013-11, Vol.4 (11), p.art140-28 |
issn | 2150-8925 2150-8925 |
language | eng |
recordid | cdi_proquest_journals_2299131894 |
source | DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online; Wiley Online Library Open Access |
subjects | Annual variations Bias Carbon Carbon dioxide Climate change ecosystem respiration eddy covariance Environmental conditions flux partitioning Forest management Forest practices Forests Growing season Harvard Forest Invasive insects Invasive species Logging Phenology Photosynthesis Respiration soil respiration Soils Temperate forests Terrestrial ecosystems Winter |
title | Soil respiration in a northeastern US temperate forest: a 22-year synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil%20respiration%20in%20a%20northeastern%20US%20temperate%20forest:%20a%2022-year%20synthesis&rft.jtitle=Ecosphere%20(Washington,%20D.C)&rft.au=Giasson,%20M.-A&rft.date=2013-11&rft.volume=4&rft.issue=11&rft.spage=art140&rft.epage=28&rft.pages=art140-28&rft.issn=2150-8925&rft.eissn=2150-8925&rft_id=info:doi/10.1890/ES13.00183.1&rft_dat=%3Cproquest_swepu%3E2299131894%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299131894&rft_id=info:pmid/&rfr_iscdi=true |