Preparation and properties of humidity sensor based on K-doped ZnO nanostructure

K x Zn 1−x O (X = 0%, 3%, 5%, 10%) nanowires have been synthesized through hydrothermal method and characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Dielectrophoresis nano-manipulation technique was employed to arrange the materials on pre-designe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2019-10, Vol.30 (20), p.18767-18779
Hauptverfasser: Gu, Yang, Ye, Zi, Sun, Ning, Kuang, Xuliang, Liu, Weijing, Song, Xiaojun, Zhang, Lei, Bai, Wei, Tang, Xiaodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18779
container_issue 20
container_start_page 18767
container_title Journal of materials science. Materials in electronics
container_volume 30
creator Gu, Yang
Ye, Zi
Sun, Ning
Kuang, Xuliang
Liu, Weijing
Song, Xiaojun
Zhang, Lei
Bai, Wei
Tang, Xiaodong
description K x Zn 1−x O (X = 0%, 3%, 5%, 10%) nanowires have been synthesized through hydrothermal method and characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Dielectrophoresis nano-manipulation technique was employed to arrange the materials on pre-designed Ti/Au electrodes to fabricate the humidity sensors, and the humidity sensing properties of sensors were investigated. The experimental results show that K-doped ZnO humidity sensors exhibit more excellent humidity sensing than the undoped ZnO humidity sensor. Especially, 5% K-doped ZnO humidity sensor show the highest sensitivity, the response time reduced from 32 to 12 s, and have lower hysteresis and better reproducibility. The improvement of humidity sensing performance is explained by the increase of oxygen vacancy defects due to the K doping process. In addition, the sensing mechanism was analyzed by complex impedance spectroscopy and multilayer adsorption theory. These results demonstrate the potential application of K-doped ZnO nanowires for fabricating high performance humidity sensors.
doi_str_mv 10.1007/s10854-019-02230-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2298927052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2298927052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b7493208026fefaecec03b036fdeaa4c3ddaa5248f1fb375dea4808f61786ffa3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJR9v0KItfuLB7UBAvIW0S7eImNWkP_fdGK3jzNDA87zvDg9A5hUsKUF0lCrIQBGhNgDEOZDpAC1pUnAjJXg7RAuqiIqJg7BidpLQDgFJwuUDbbbS9jnrogsfaG9zH0Ns4dDbh4PD7uO9MN0w4WZ9CxI1O1uCMPhKTOYNf_QZ77UMa4tgOY7Sn6Mjpj2TPfucSPd_ePK3uyXpz97C6XpOW03ogTSVqzkACK5112ra2Bd4AL52xWouWG6N1wYR01DW8KvJWSJCupJUsndN8iS7m3vzw52jToHZhjD6fVIzVsmYVFCxTbKbaGFKK1qk-dnsdJ0VBfZtTszmVzakfc2rKIT6HUob9m41_1f-kvgC78HMp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298927052</pqid></control><display><type>article</type><title>Preparation and properties of humidity sensor based on K-doped ZnO nanostructure</title><source>Springer Nature - Complete Springer Journals</source><creator>Gu, Yang ; Ye, Zi ; Sun, Ning ; Kuang, Xuliang ; Liu, Weijing ; Song, Xiaojun ; Zhang, Lei ; Bai, Wei ; Tang, Xiaodong</creator><creatorcontrib>Gu, Yang ; Ye, Zi ; Sun, Ning ; Kuang, Xuliang ; Liu, Weijing ; Song, Xiaojun ; Zhang, Lei ; Bai, Wei ; Tang, Xiaodong</creatorcontrib><description>K x Zn 1−x O (X = 0%, 3%, 5%, 10%) nanowires have been synthesized through hydrothermal method and characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Dielectrophoresis nano-manipulation technique was employed to arrange the materials on pre-designed Ti/Au electrodes to fabricate the humidity sensors, and the humidity sensing properties of sensors were investigated. The experimental results show that K-doped ZnO humidity sensors exhibit more excellent humidity sensing than the undoped ZnO humidity sensor. Especially, 5% K-doped ZnO humidity sensor show the highest sensitivity, the response time reduced from 32 to 12 s, and have lower hysteresis and better reproducibility. The improvement of humidity sensing performance is explained by the increase of oxygen vacancy defects due to the K doping process. In addition, the sensing mechanism was analyzed by complex impedance spectroscopy and multilayer adsorption theory. These results demonstrate the potential application of K-doped ZnO nanowires for fabricating high performance humidity sensors.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-02230-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Detection ; Dielectrophoresis ; Humidity ; Materials Science ; Multilayers ; Nanowires ; Optical and Electronic Materials ; Photoelectrons ; Response time ; Sensors ; Spectrum analysis ; Zinc oxide</subject><ispartof>Journal of materials science. Materials in electronics, 2019-10, Vol.30 (20), p.18767-18779</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b7493208026fefaecec03b036fdeaa4c3ddaa5248f1fb375dea4808f61786ffa3</citedby><cites>FETCH-LOGICAL-c319t-b7493208026fefaecec03b036fdeaa4c3ddaa5248f1fb375dea4808f61786ffa3</cites><orcidid>0000-0003-3205-3601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-019-02230-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-019-02230-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gu, Yang</creatorcontrib><creatorcontrib>Ye, Zi</creatorcontrib><creatorcontrib>Sun, Ning</creatorcontrib><creatorcontrib>Kuang, Xuliang</creatorcontrib><creatorcontrib>Liu, Weijing</creatorcontrib><creatorcontrib>Song, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Bai, Wei</creatorcontrib><creatorcontrib>Tang, Xiaodong</creatorcontrib><title>Preparation and properties of humidity sensor based on K-doped ZnO nanostructure</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>K x Zn 1−x O (X = 0%, 3%, 5%, 10%) nanowires have been synthesized through hydrothermal method and characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Dielectrophoresis nano-manipulation technique was employed to arrange the materials on pre-designed Ti/Au electrodes to fabricate the humidity sensors, and the humidity sensing properties of sensors were investigated. The experimental results show that K-doped ZnO humidity sensors exhibit more excellent humidity sensing than the undoped ZnO humidity sensor. Especially, 5% K-doped ZnO humidity sensor show the highest sensitivity, the response time reduced from 32 to 12 s, and have lower hysteresis and better reproducibility. The improvement of humidity sensing performance is explained by the increase of oxygen vacancy defects due to the K doping process. In addition, the sensing mechanism was analyzed by complex impedance spectroscopy and multilayer adsorption theory. These results demonstrate the potential application of K-doped ZnO nanowires for fabricating high performance humidity sensors.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Detection</subject><subject>Dielectrophoresis</subject><subject>Humidity</subject><subject>Materials Science</subject><subject>Multilayers</subject><subject>Nanowires</subject><subject>Optical and Electronic Materials</subject><subject>Photoelectrons</subject><subject>Response time</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Zinc oxide</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJR9v0KItfuLB7UBAvIW0S7eImNWkP_fdGK3jzNDA87zvDg9A5hUsKUF0lCrIQBGhNgDEOZDpAC1pUnAjJXg7RAuqiIqJg7BidpLQDgFJwuUDbbbS9jnrogsfaG9zH0Ns4dDbh4PD7uO9MN0w4WZ9CxI1O1uCMPhKTOYNf_QZ77UMa4tgOY7Sn6Mjpj2TPfucSPd_ePK3uyXpz97C6XpOW03ogTSVqzkACK5112ra2Bd4AL52xWouWG6N1wYR01DW8KvJWSJCupJUsndN8iS7m3vzw52jToHZhjD6fVIzVsmYVFCxTbKbaGFKK1qk-dnsdJ0VBfZtTszmVzakfc2rKIT6HUob9m41_1f-kvgC78HMp</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Gu, Yang</creator><creator>Ye, Zi</creator><creator>Sun, Ning</creator><creator>Kuang, Xuliang</creator><creator>Liu, Weijing</creator><creator>Song, Xiaojun</creator><creator>Zhang, Lei</creator><creator>Bai, Wei</creator><creator>Tang, Xiaodong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3205-3601</orcidid></search><sort><creationdate>20191001</creationdate><title>Preparation and properties of humidity sensor based on K-doped ZnO nanostructure</title><author>Gu, Yang ; Ye, Zi ; Sun, Ning ; Kuang, Xuliang ; Liu, Weijing ; Song, Xiaojun ; Zhang, Lei ; Bai, Wei ; Tang, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b7493208026fefaecec03b036fdeaa4c3ddaa5248f1fb375dea4808f61786ffa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Detection</topic><topic>Dielectrophoresis</topic><topic>Humidity</topic><topic>Materials Science</topic><topic>Multilayers</topic><topic>Nanowires</topic><topic>Optical and Electronic Materials</topic><topic>Photoelectrons</topic><topic>Response time</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Yang</creatorcontrib><creatorcontrib>Ye, Zi</creatorcontrib><creatorcontrib>Sun, Ning</creatorcontrib><creatorcontrib>Kuang, Xuliang</creatorcontrib><creatorcontrib>Liu, Weijing</creatorcontrib><creatorcontrib>Song, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Bai, Wei</creatorcontrib><creatorcontrib>Tang, Xiaodong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Yang</au><au>Ye, Zi</au><au>Sun, Ning</au><au>Kuang, Xuliang</au><au>Liu, Weijing</au><au>Song, Xiaojun</au><au>Zhang, Lei</au><au>Bai, Wei</au><au>Tang, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and properties of humidity sensor based on K-doped ZnO nanostructure</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>30</volume><issue>20</issue><spage>18767</spage><epage>18779</epage><pages>18767-18779</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>K x Zn 1−x O (X = 0%, 3%, 5%, 10%) nanowires have been synthesized through hydrothermal method and characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Dielectrophoresis nano-manipulation technique was employed to arrange the materials on pre-designed Ti/Au electrodes to fabricate the humidity sensors, and the humidity sensing properties of sensors were investigated. The experimental results show that K-doped ZnO humidity sensors exhibit more excellent humidity sensing than the undoped ZnO humidity sensor. Especially, 5% K-doped ZnO humidity sensor show the highest sensitivity, the response time reduced from 32 to 12 s, and have lower hysteresis and better reproducibility. The improvement of humidity sensing performance is explained by the increase of oxygen vacancy defects due to the K doping process. In addition, the sensing mechanism was analyzed by complex impedance spectroscopy and multilayer adsorption theory. These results demonstrate the potential application of K-doped ZnO nanowires for fabricating high performance humidity sensors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-02230-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3205-3601</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2019-10, Vol.30 (20), p.18767-18779
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2298927052
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Detection
Dielectrophoresis
Humidity
Materials Science
Multilayers
Nanowires
Optical and Electronic Materials
Photoelectrons
Response time
Sensors
Spectrum analysis
Zinc oxide
title Preparation and properties of humidity sensor based on K-doped ZnO nanostructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20properties%20of%20humidity%20sensor%20based%20on%20K-doped%20ZnO%20nanostructure&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Gu,%20Yang&rft.date=2019-10-01&rft.volume=30&rft.issue=20&rft.spage=18767&rft.epage=18779&rft.pages=18767-18779&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-02230-y&rft_dat=%3Cproquest_cross%3E2298927052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298927052&rft_id=info:pmid/&rfr_iscdi=true