Preparation and properties of humidity sensor based on K-doped ZnO nanostructure
K x Zn 1−x O (X = 0%, 3%, 5%, 10%) nanowires have been synthesized through hydrothermal method and characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Dielectrophoresis nano-manipulation technique was employed to arrange the materials on pre-designe...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2019-10, Vol.30 (20), p.18767-18779 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18779 |
---|---|
container_issue | 20 |
container_start_page | 18767 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 30 |
creator | Gu, Yang Ye, Zi Sun, Ning Kuang, Xuliang Liu, Weijing Song, Xiaojun Zhang, Lei Bai, Wei Tang, Xiaodong |
description | K
x
Zn
1−x
O (X = 0%, 3%, 5%, 10%) nanowires have been synthesized through hydrothermal method and characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Dielectrophoresis nano-manipulation technique was employed to arrange the materials on pre-designed Ti/Au electrodes to fabricate the humidity sensors, and the humidity sensing properties of sensors were investigated. The experimental results show that K-doped ZnO humidity sensors exhibit more excellent humidity sensing than the undoped ZnO humidity sensor. Especially, 5% K-doped ZnO humidity sensor show the highest sensitivity, the response time reduced from 32 to 12 s, and have lower hysteresis and better reproducibility. The improvement of humidity sensing performance is explained by the increase of oxygen vacancy defects due to the K doping process. In addition, the sensing mechanism was analyzed by complex impedance spectroscopy and multilayer adsorption theory. These results demonstrate the potential application of K-doped ZnO nanowires for fabricating high performance humidity sensors. |
doi_str_mv | 10.1007/s10854-019-02230-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2298927052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2298927052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b7493208026fefaecec03b036fdeaa4c3ddaa5248f1fb375dea4808f61786ffa3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJR9v0KItfuLB7UBAvIW0S7eImNWkP_fdGK3jzNDA87zvDg9A5hUsKUF0lCrIQBGhNgDEOZDpAC1pUnAjJXg7RAuqiIqJg7BidpLQDgFJwuUDbbbS9jnrogsfaG9zH0Ns4dDbh4PD7uO9MN0w4WZ9CxI1O1uCMPhKTOYNf_QZ77UMa4tgOY7Sn6Mjpj2TPfucSPd_ePK3uyXpz97C6XpOW03ogTSVqzkACK5112ra2Bd4AL52xWouWG6N1wYR01DW8KvJWSJCupJUsndN8iS7m3vzw52jToHZhjD6fVIzVsmYVFCxTbKbaGFKK1qk-dnsdJ0VBfZtTszmVzakfc2rKIT6HUob9m41_1f-kvgC78HMp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298927052</pqid></control><display><type>article</type><title>Preparation and properties of humidity sensor based on K-doped ZnO nanostructure</title><source>Springer Nature - Complete Springer Journals</source><creator>Gu, Yang ; Ye, Zi ; Sun, Ning ; Kuang, Xuliang ; Liu, Weijing ; Song, Xiaojun ; Zhang, Lei ; Bai, Wei ; Tang, Xiaodong</creator><creatorcontrib>Gu, Yang ; Ye, Zi ; Sun, Ning ; Kuang, Xuliang ; Liu, Weijing ; Song, Xiaojun ; Zhang, Lei ; Bai, Wei ; Tang, Xiaodong</creatorcontrib><description>K
x
Zn
1−x
O (X = 0%, 3%, 5%, 10%) nanowires have been synthesized through hydrothermal method and characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Dielectrophoresis nano-manipulation technique was employed to arrange the materials on pre-designed Ti/Au electrodes to fabricate the humidity sensors, and the humidity sensing properties of sensors were investigated. The experimental results show that K-doped ZnO humidity sensors exhibit more excellent humidity sensing than the undoped ZnO humidity sensor. Especially, 5% K-doped ZnO humidity sensor show the highest sensitivity, the response time reduced from 32 to 12 s, and have lower hysteresis and better reproducibility. The improvement of humidity sensing performance is explained by the increase of oxygen vacancy defects due to the K doping process. In addition, the sensing mechanism was analyzed by complex impedance spectroscopy and multilayer adsorption theory. These results demonstrate the potential application of K-doped ZnO nanowires for fabricating high performance humidity sensors.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-02230-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Detection ; Dielectrophoresis ; Humidity ; Materials Science ; Multilayers ; Nanowires ; Optical and Electronic Materials ; Photoelectrons ; Response time ; Sensors ; Spectrum analysis ; Zinc oxide</subject><ispartof>Journal of materials science. Materials in electronics, 2019-10, Vol.30 (20), p.18767-18779</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b7493208026fefaecec03b036fdeaa4c3ddaa5248f1fb375dea4808f61786ffa3</citedby><cites>FETCH-LOGICAL-c319t-b7493208026fefaecec03b036fdeaa4c3ddaa5248f1fb375dea4808f61786ffa3</cites><orcidid>0000-0003-3205-3601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-019-02230-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-019-02230-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gu, Yang</creatorcontrib><creatorcontrib>Ye, Zi</creatorcontrib><creatorcontrib>Sun, Ning</creatorcontrib><creatorcontrib>Kuang, Xuliang</creatorcontrib><creatorcontrib>Liu, Weijing</creatorcontrib><creatorcontrib>Song, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Bai, Wei</creatorcontrib><creatorcontrib>Tang, Xiaodong</creatorcontrib><title>Preparation and properties of humidity sensor based on K-doped ZnO nanostructure</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>K
x
Zn
1−x
O (X = 0%, 3%, 5%, 10%) nanowires have been synthesized through hydrothermal method and characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Dielectrophoresis nano-manipulation technique was employed to arrange the materials on pre-designed Ti/Au electrodes to fabricate the humidity sensors, and the humidity sensing properties of sensors were investigated. The experimental results show that K-doped ZnO humidity sensors exhibit more excellent humidity sensing than the undoped ZnO humidity sensor. Especially, 5% K-doped ZnO humidity sensor show the highest sensitivity, the response time reduced from 32 to 12 s, and have lower hysteresis and better reproducibility. The improvement of humidity sensing performance is explained by the increase of oxygen vacancy defects due to the K doping process. In addition, the sensing mechanism was analyzed by complex impedance spectroscopy and multilayer adsorption theory. These results demonstrate the potential application of K-doped ZnO nanowires for fabricating high performance humidity sensors.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Detection</subject><subject>Dielectrophoresis</subject><subject>Humidity</subject><subject>Materials Science</subject><subject>Multilayers</subject><subject>Nanowires</subject><subject>Optical and Electronic Materials</subject><subject>Photoelectrons</subject><subject>Response time</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>Zinc oxide</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9HJR9v0KItfuLB7UBAvIW0S7eImNWkP_fdGK3jzNDA87zvDg9A5hUsKUF0lCrIQBGhNgDEOZDpAC1pUnAjJXg7RAuqiIqJg7BidpLQDgFJwuUDbbbS9jnrogsfaG9zH0Ns4dDbh4PD7uO9MN0w4WZ9CxI1O1uCMPhKTOYNf_QZ77UMa4tgOY7Sn6Mjpj2TPfucSPd_ePK3uyXpz97C6XpOW03ogTSVqzkACK5112ra2Bd4AL52xWouWG6N1wYR01DW8KvJWSJCupJUsndN8iS7m3vzw52jToHZhjD6fVIzVsmYVFCxTbKbaGFKK1qk-dnsdJ0VBfZtTszmVzakfc2rKIT6HUob9m41_1f-kvgC78HMp</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Gu, Yang</creator><creator>Ye, Zi</creator><creator>Sun, Ning</creator><creator>Kuang, Xuliang</creator><creator>Liu, Weijing</creator><creator>Song, Xiaojun</creator><creator>Zhang, Lei</creator><creator>Bai, Wei</creator><creator>Tang, Xiaodong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3205-3601</orcidid></search><sort><creationdate>20191001</creationdate><title>Preparation and properties of humidity sensor based on K-doped ZnO nanostructure</title><author>Gu, Yang ; Ye, Zi ; Sun, Ning ; Kuang, Xuliang ; Liu, Weijing ; Song, Xiaojun ; Zhang, Lei ; Bai, Wei ; Tang, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b7493208026fefaecec03b036fdeaa4c3ddaa5248f1fb375dea4808f61786ffa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Detection</topic><topic>Dielectrophoresis</topic><topic>Humidity</topic><topic>Materials Science</topic><topic>Multilayers</topic><topic>Nanowires</topic><topic>Optical and Electronic Materials</topic><topic>Photoelectrons</topic><topic>Response time</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Yang</creatorcontrib><creatorcontrib>Ye, Zi</creatorcontrib><creatorcontrib>Sun, Ning</creatorcontrib><creatorcontrib>Kuang, Xuliang</creatorcontrib><creatorcontrib>Liu, Weijing</creatorcontrib><creatorcontrib>Song, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Bai, Wei</creatorcontrib><creatorcontrib>Tang, Xiaodong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Yang</au><au>Ye, Zi</au><au>Sun, Ning</au><au>Kuang, Xuliang</au><au>Liu, Weijing</au><au>Song, Xiaojun</au><au>Zhang, Lei</au><au>Bai, Wei</au><au>Tang, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation and properties of humidity sensor based on K-doped ZnO nanostructure</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>30</volume><issue>20</issue><spage>18767</spage><epage>18779</epage><pages>18767-18779</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>K
x
Zn
1−x
O (X = 0%, 3%, 5%, 10%) nanowires have been synthesized through hydrothermal method and characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Dielectrophoresis nano-manipulation technique was employed to arrange the materials on pre-designed Ti/Au electrodes to fabricate the humidity sensors, and the humidity sensing properties of sensors were investigated. The experimental results show that K-doped ZnO humidity sensors exhibit more excellent humidity sensing than the undoped ZnO humidity sensor. Especially, 5% K-doped ZnO humidity sensor show the highest sensitivity, the response time reduced from 32 to 12 s, and have lower hysteresis and better reproducibility. The improvement of humidity sensing performance is explained by the increase of oxygen vacancy defects due to the K doping process. In addition, the sensing mechanism was analyzed by complex impedance spectroscopy and multilayer adsorption theory. These results demonstrate the potential application of K-doped ZnO nanowires for fabricating high performance humidity sensors.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-02230-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3205-3601</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2019-10, Vol.30 (20), p.18767-18779 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2298927052 |
source | Springer Nature - Complete Springer Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Detection Dielectrophoresis Humidity Materials Science Multilayers Nanowires Optical and Electronic Materials Photoelectrons Response time Sensors Spectrum analysis Zinc oxide |
title | Preparation and properties of humidity sensor based on K-doped ZnO nanostructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T22%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20and%20properties%20of%20humidity%20sensor%20based%20on%20K-doped%20ZnO%20nanostructure&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Gu,%20Yang&rft.date=2019-10-01&rft.volume=30&rft.issue=20&rft.spage=18767&rft.epage=18779&rft.pages=18767-18779&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-02230-y&rft_dat=%3Cproquest_cross%3E2298927052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298927052&rft_id=info:pmid/&rfr_iscdi=true |