A MEMS Accelerometer for Sub-mG Sensing

In this paper, we present a highly sensitive micro-electromechanical system (MEMS) accelerometer for sub-mG sensing resolution, where the thermomechanical noise (i.e., Brownian noise, BN) being inversely proportional to a proof mass has to be below 1 µG/√Hz (gravity acceleration G = 9.8 m/s2). To in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and materials 2019-01, Vol.31 (9), p.2883
Hauptverfasser: Yamane, Daisuke, Konishi, Toshifumi, Safu, Teruaki, Toshiyoshi, Hiroshi, Sone, Masato, Machida, Katsuyuki, Ito, Hiroyuki, Masu, Kazuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 2883
container_title Sensors and materials
container_volume 31
creator Yamane, Daisuke
Konishi, Toshifumi
Safu, Teruaki
Toshiyoshi, Hiroshi
Sone, Masato
Machida, Katsuyuki
Ito, Hiroyuki
Masu, Kazuya
description In this paper, we present a highly sensitive micro-electromechanical system (MEMS) accelerometer for sub-mG sensing resolution, where the thermomechanical noise (i.e., Brownian noise, BN) being inversely proportional to a proof mass has to be below 1 µG/√Hz (gravity acceleration G = 9.8 m/s2). To increase the proof mass, we propose the use of multiple-layered metal developed by Au electroplating. We then show an approach to design the spring constant for the MEMS accelerometer. A multilayer metal structure is used for serpentine flexures to suspend the high-density proof mass, which also enables us to obtain a high degree of freedom for the spring constant design without compromising the performance of the MEMS accelerometer. A proof-of-concept device has been fabricated, and the measured characteristics are consistent with the design values. The BN of the developed device is experimentally evaluated to be 22 nG/√Hz, which is one or more orders of magnitude lower than those of conventional MEMS accelerometers with the same capacitance sensitivity. The evaluation results confirm that the proposed device has potential for sub-mG sensing.
doi_str_mv 10.18494/SAM.2019.2122
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2298760858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2298760858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-ecaf9972b474bf679ad1342fbeb0cd2ecaab052a1388213ee7ee9e168cd0c03f3</originalsourceid><addsrcrecordid>eNotkD1PwzAURT2ARFW6MkdiYEp4_khsj1FVClIjhsBs2c4zatUkxW4G_j0pZbrDPbpXOoQ8UCioElo8t3VTMKC6YJSxG7IATUUuNC_vyCqlAwBQVULFqgV5qrNm07RZ7T0eMY49njFmYYxZO7m832YtDmk_fN2T22CPCVf_uSSfL5uP9Wu-e9--retd7gWV5xy9DVpL5oQULlRS245ywYJDB75jc20dlMxSrhSjHFEiaqSV8h144IEvyeN19xTH7wnT2RzGKQ7zpWFMK1mBKtVMFVfKxzGliMGc4r638cdQMH8OzOzAXByYiwP-C2RETp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298760858</pqid></control><display><type>article</type><title>A MEMS Accelerometer for Sub-mG Sensing</title><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Yamane, Daisuke ; Konishi, Toshifumi ; Safu, Teruaki ; Toshiyoshi, Hiroshi ; Sone, Masato ; Machida, Katsuyuki ; Ito, Hiroyuki ; Masu, Kazuya</creator><creatorcontrib>Yamane, Daisuke ; Konishi, Toshifumi ; Safu, Teruaki ; Toshiyoshi, Hiroshi ; Sone, Masato ; Machida, Katsuyuki ; Ito, Hiroyuki ; Masu, Kazuya</creatorcontrib><description>In this paper, we present a highly sensitive micro-electromechanical system (MEMS) accelerometer for sub-mG sensing resolution, where the thermomechanical noise (i.e., Brownian noise, BN) being inversely proportional to a proof mass has to be below 1 µG/√Hz (gravity acceleration G = 9.8 m/s2). To increase the proof mass, we propose the use of multiple-layered metal developed by Au electroplating. We then show an approach to design the spring constant for the MEMS accelerometer. A multilayer metal structure is used for serpentine flexures to suspend the high-density proof mass, which also enables us to obtain a high degree of freedom for the spring constant design without compromising the performance of the MEMS accelerometer. A proof-of-concept device has been fabricated, and the measured characteristics are consistent with the design values. The BN of the developed device is experimentally evaluated to be 22 nG/√Hz, which is one or more orders of magnitude lower than those of conventional MEMS accelerometers with the same capacitance sensitivity. The evaluation results confirm that the proposed device has potential for sub-mG sensing.</description><identifier>ISSN: 0914-4935</identifier><identifier>DOI: 10.18494/SAM.2019.2122</identifier><language>eng</language><publisher>Tokyo: MYU Scientific Publishing Division</publisher><subject>Acceleration ; Accelerometers ; Brownian motion ; Detection ; Electrical noise ; Electroplating ; Gold ; Microelectromechanical systems ; Multilayers ; Sensitivity analysis ; Serpentine ; Spring constant</subject><ispartof>Sensors and materials, 2019-01, Vol.31 (9), p.2883</ispartof><rights>Copyright MYU Scientific Publishing Division 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-ecaf9972b474bf679ad1342fbeb0cd2ecaab052a1388213ee7ee9e168cd0c03f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Yamane, Daisuke</creatorcontrib><creatorcontrib>Konishi, Toshifumi</creatorcontrib><creatorcontrib>Safu, Teruaki</creatorcontrib><creatorcontrib>Toshiyoshi, Hiroshi</creatorcontrib><creatorcontrib>Sone, Masato</creatorcontrib><creatorcontrib>Machida, Katsuyuki</creatorcontrib><creatorcontrib>Ito, Hiroyuki</creatorcontrib><creatorcontrib>Masu, Kazuya</creatorcontrib><title>A MEMS Accelerometer for Sub-mG Sensing</title><title>Sensors and materials</title><description>In this paper, we present a highly sensitive micro-electromechanical system (MEMS) accelerometer for sub-mG sensing resolution, where the thermomechanical noise (i.e., Brownian noise, BN) being inversely proportional to a proof mass has to be below 1 µG/√Hz (gravity acceleration G = 9.8 m/s2). To increase the proof mass, we propose the use of multiple-layered metal developed by Au electroplating. We then show an approach to design the spring constant for the MEMS accelerometer. A multilayer metal structure is used for serpentine flexures to suspend the high-density proof mass, which also enables us to obtain a high degree of freedom for the spring constant design without compromising the performance of the MEMS accelerometer. A proof-of-concept device has been fabricated, and the measured characteristics are consistent with the design values. The BN of the developed device is experimentally evaluated to be 22 nG/√Hz, which is one or more orders of magnitude lower than those of conventional MEMS accelerometers with the same capacitance sensitivity. The evaluation results confirm that the proposed device has potential for sub-mG sensing.</description><subject>Acceleration</subject><subject>Accelerometers</subject><subject>Brownian motion</subject><subject>Detection</subject><subject>Electrical noise</subject><subject>Electroplating</subject><subject>Gold</subject><subject>Microelectromechanical systems</subject><subject>Multilayers</subject><subject>Sensitivity analysis</subject><subject>Serpentine</subject><subject>Spring constant</subject><issn>0914-4935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAURT2ARFW6MkdiYEp4_khsj1FVClIjhsBs2c4zatUkxW4G_j0pZbrDPbpXOoQ8UCioElo8t3VTMKC6YJSxG7IATUUuNC_vyCqlAwBQVULFqgV5qrNm07RZ7T0eMY49njFmYYxZO7m832YtDmk_fN2T22CPCVf_uSSfL5uP9Wu-e9--retd7gWV5xy9DVpL5oQULlRS245ywYJDB75jc20dlMxSrhSjHFEiaqSV8h144IEvyeN19xTH7wnT2RzGKQ7zpWFMK1mBKtVMFVfKxzGliMGc4r638cdQMH8OzOzAXByYiwP-C2RETp0</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Yamane, Daisuke</creator><creator>Konishi, Toshifumi</creator><creator>Safu, Teruaki</creator><creator>Toshiyoshi, Hiroshi</creator><creator>Sone, Masato</creator><creator>Machida, Katsuyuki</creator><creator>Ito, Hiroyuki</creator><creator>Masu, Kazuya</creator><general>MYU Scientific Publishing Division</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190101</creationdate><title>A MEMS Accelerometer for Sub-mG Sensing</title><author>Yamane, Daisuke ; Konishi, Toshifumi ; Safu, Teruaki ; Toshiyoshi, Hiroshi ; Sone, Masato ; Machida, Katsuyuki ; Ito, Hiroyuki ; Masu, Kazuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-ecaf9972b474bf679ad1342fbeb0cd2ecaab052a1388213ee7ee9e168cd0c03f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Accelerometers</topic><topic>Brownian motion</topic><topic>Detection</topic><topic>Electrical noise</topic><topic>Electroplating</topic><topic>Gold</topic><topic>Microelectromechanical systems</topic><topic>Multilayers</topic><topic>Sensitivity analysis</topic><topic>Serpentine</topic><topic>Spring constant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamane, Daisuke</creatorcontrib><creatorcontrib>Konishi, Toshifumi</creatorcontrib><creatorcontrib>Safu, Teruaki</creatorcontrib><creatorcontrib>Toshiyoshi, Hiroshi</creatorcontrib><creatorcontrib>Sone, Masato</creatorcontrib><creatorcontrib>Machida, Katsuyuki</creatorcontrib><creatorcontrib>Ito, Hiroyuki</creatorcontrib><creatorcontrib>Masu, Kazuya</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamane, Daisuke</au><au>Konishi, Toshifumi</au><au>Safu, Teruaki</au><au>Toshiyoshi, Hiroshi</au><au>Sone, Masato</au><au>Machida, Katsuyuki</au><au>Ito, Hiroyuki</au><au>Masu, Kazuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A MEMS Accelerometer for Sub-mG Sensing</atitle><jtitle>Sensors and materials</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>31</volume><issue>9</issue><spage>2883</spage><pages>2883-</pages><issn>0914-4935</issn><abstract>In this paper, we present a highly sensitive micro-electromechanical system (MEMS) accelerometer for sub-mG sensing resolution, where the thermomechanical noise (i.e., Brownian noise, BN) being inversely proportional to a proof mass has to be below 1 µG/√Hz (gravity acceleration G = 9.8 m/s2). To increase the proof mass, we propose the use of multiple-layered metal developed by Au electroplating. We then show an approach to design the spring constant for the MEMS accelerometer. A multilayer metal structure is used for serpentine flexures to suspend the high-density proof mass, which also enables us to obtain a high degree of freedom for the spring constant design without compromising the performance of the MEMS accelerometer. A proof-of-concept device has been fabricated, and the measured characteristics are consistent with the design values. The BN of the developed device is experimentally evaluated to be 22 nG/√Hz, which is one or more orders of magnitude lower than those of conventional MEMS accelerometers with the same capacitance sensitivity. The evaluation results confirm that the proposed device has potential for sub-mG sensing.</abstract><cop>Tokyo</cop><pub>MYU Scientific Publishing Division</pub><doi>10.18494/SAM.2019.2122</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0914-4935
ispartof Sensors and materials, 2019-01, Vol.31 (9), p.2883
issn 0914-4935
language eng
recordid cdi_proquest_journals_2298760858
source DOAJ Directory of Open Access Journals; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Acceleration
Accelerometers
Brownian motion
Detection
Electrical noise
Electroplating
Gold
Microelectromechanical systems
Multilayers
Sensitivity analysis
Serpentine
Spring constant
title A MEMS Accelerometer for Sub-mG Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A45%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20MEMS%20Accelerometer%20for%20Sub-mG%20Sensing&rft.jtitle=Sensors%20and%20materials&rft.au=Yamane,%20Daisuke&rft.date=2019-01-01&rft.volume=31&rft.issue=9&rft.spage=2883&rft.pages=2883-&rft.issn=0914-4935&rft_id=info:doi/10.18494/SAM.2019.2122&rft_dat=%3Cproquest_cross%3E2298760858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298760858&rft_id=info:pmid/&rfr_iscdi=true