Enhanced Fuzzy-Based Local Information Algorithm for Sonar Image Segmentation

The recent boost in undersea operations has led to the development of high-resolution sonar systems mounted on autonomous vehicles. These vehicles are used to scan the seafloor in search of different objects such as sunken ships, archaeological sites, and submerged mines. An important part of the de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2020-01, Vol.29, p.445-460
Hauptverfasser: Abu, Avi, Diamant, Roee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 460
container_issue
container_start_page 445
container_title IEEE transactions on image processing
container_volume 29
creator Abu, Avi
Diamant, Roee
description The recent boost in undersea operations has led to the development of high-resolution sonar systems mounted on autonomous vehicles. These vehicles are used to scan the seafloor in search of different objects such as sunken ships, archaeological sites, and submerged mines. An important part of the detection operation is the segmentation of sonar images, where the object's highlight and shadow are distinguished from the seabed background. In this paper, we focus on the automatic segmentation of sonar images. We present our enhanced fuzzy-based with Kernel metric (EnFK) algorithm for the segmentation of sonar images which, in an attempt to improve segmentation accuracy, introduces two new fuzzy terms of local spatial and statistical information. Our algorithm includes a preliminary de-noising algorithm which, together with the original image, feeds into the segmentation procedure to avoid trapping to local minima and to improve convergence. The result is a segmentation procedure that specifically suits the intensity inhomogeneity and the complex seabed texture of sonar images. We tested our approach using simulated images, real sonar images, and sonar images that were created in two different sea experiments, using multibeam sonar and synthetic aperture sonar. The results show accurate segmentation performance that is far beyond the state-of-the-art results.
doi_str_mv 10.1109/TIP.2019.2930148
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2298707394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8779589</ieee_id><sourcerecordid>2298707394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-cf955c26a1508df3733f256be1022111c62ca9fae86568807cdd2b8238690ef83</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRrFbvgiABL15Sd3azX0ctrQYqCuo5bDebmpJkdTc56K93tbUHT_My88wwPAidAZ4AYHX9kj9NCAY1IYpiyOQeOgKVQYpxRvZjxkykAjI1QschrHFEGPBDNKJAuaKCH6GHWfemO2PLZD58fX2mtzrEvHBGN0neVc63uq9dl9w0K-fr_q1NYi95dp32Sd7qlU2e7aq1Xf-LnaCDSjfBnm7rGL3OZy_T-3TxeJdPbxapoVL1qakUY4ZwDQzLsqKC0oowvrSACQEAw4nRqtJWcsalxMKUJVlKQiVX2FaSjtHV5u67dx-DDX3R1sHYptGddUMoCOGSAicZi-jlP3TtBt_F7yKlpMCCqixSeEMZ70Lwtirefd1q_1kALn5UF1F18aO62KqOKxfbw8OyteVu4c9tBM43QG2t3Y2lEIpJRb8B7fuAWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298707394</pqid></control><display><type>article</type><title>Enhanced Fuzzy-Based Local Information Algorithm for Sonar Image Segmentation</title><source>IEEE Electronic Library (IEL)</source><creator>Abu, Avi ; Diamant, Roee</creator><creatorcontrib>Abu, Avi ; Diamant, Roee</creatorcontrib><description>The recent boost in undersea operations has led to the development of high-resolution sonar systems mounted on autonomous vehicles. These vehicles are used to scan the seafloor in search of different objects such as sunken ships, archaeological sites, and submerged mines. An important part of the detection operation is the segmentation of sonar images, where the object's highlight and shadow are distinguished from the seabed background. In this paper, we focus on the automatic segmentation of sonar images. We present our enhanced fuzzy-based with Kernel metric (EnFK) algorithm for the segmentation of sonar images which, in an attempt to improve segmentation accuracy, introduces two new fuzzy terms of local spatial and statistical information. Our algorithm includes a preliminary de-noising algorithm which, together with the original image, feeds into the segmentation procedure to avoid trapping to local minima and to improve convergence. The result is a segmentation procedure that specifically suits the intensity inhomogeneity and the complex seabed texture of sonar images. We tested our approach using simulated images, real sonar images, and sonar images that were created in two different sea experiments, using multibeam sonar and synthetic aperture sonar. The results show accurate segmentation performance that is far beyond the state-of-the-art results.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2019.2930148</identifier><identifier>PMID: 31369376</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Computer simulation ; Fuzzy clustering ; Historic sites ; image de-noising ; Image denoising ; Image detection ; Image enhancement ; Image segmentation ; Inhomogeneity ; intensity inhomogeneity ; kernel-induced distance ; Noise reduction ; Nonhomogeneous media ; Ocean floor ; Robustness ; Sonar ; sonar image segmentation ; speckle noise ; Synthetic aperture sonar ; Synthetic apertures ; Undersea</subject><ispartof>IEEE transactions on image processing, 2020-01, Vol.29, p.445-460</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-cf955c26a1508df3733f256be1022111c62ca9fae86568807cdd2b8238690ef83</citedby><cites>FETCH-LOGICAL-c389t-cf955c26a1508df3733f256be1022111c62ca9fae86568807cdd2b8238690ef83</cites><orcidid>0000-0002-7757-1288 ; 0000-0002-2430-7061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8779589$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8779589$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31369376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abu, Avi</creatorcontrib><creatorcontrib>Diamant, Roee</creatorcontrib><title>Enhanced Fuzzy-Based Local Information Algorithm for Sonar Image Segmentation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>The recent boost in undersea operations has led to the development of high-resolution sonar systems mounted on autonomous vehicles. These vehicles are used to scan the seafloor in search of different objects such as sunken ships, archaeological sites, and submerged mines. An important part of the detection operation is the segmentation of sonar images, where the object's highlight and shadow are distinguished from the seabed background. In this paper, we focus on the automatic segmentation of sonar images. We present our enhanced fuzzy-based with Kernel metric (EnFK) algorithm for the segmentation of sonar images which, in an attempt to improve segmentation accuracy, introduces two new fuzzy terms of local spatial and statistical information. Our algorithm includes a preliminary de-noising algorithm which, together with the original image, feeds into the segmentation procedure to avoid trapping to local minima and to improve convergence. The result is a segmentation procedure that specifically suits the intensity inhomogeneity and the complex seabed texture of sonar images. We tested our approach using simulated images, real sonar images, and sonar images that were created in two different sea experiments, using multibeam sonar and synthetic aperture sonar. The results show accurate segmentation performance that is far beyond the state-of-the-art results.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Fuzzy clustering</subject><subject>Historic sites</subject><subject>image de-noising</subject><subject>Image denoising</subject><subject>Image detection</subject><subject>Image enhancement</subject><subject>Image segmentation</subject><subject>Inhomogeneity</subject><subject>intensity inhomogeneity</subject><subject>kernel-induced distance</subject><subject>Noise reduction</subject><subject>Nonhomogeneous media</subject><subject>Ocean floor</subject><subject>Robustness</subject><subject>Sonar</subject><subject>sonar image segmentation</subject><subject>speckle noise</subject><subject>Synthetic aperture sonar</subject><subject>Synthetic apertures</subject><subject>Undersea</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRrFbvgiABL15Sd3azX0ctrQYqCuo5bDebmpJkdTc56K93tbUHT_My88wwPAidAZ4AYHX9kj9NCAY1IYpiyOQeOgKVQYpxRvZjxkykAjI1QschrHFEGPBDNKJAuaKCH6GHWfemO2PLZD58fX2mtzrEvHBGN0neVc63uq9dl9w0K-fr_q1NYi95dp32Sd7qlU2e7aq1Xf-LnaCDSjfBnm7rGL3OZy_T-3TxeJdPbxapoVL1qakUY4ZwDQzLsqKC0oowvrSACQEAw4nRqtJWcsalxMKUJVlKQiVX2FaSjtHV5u67dx-DDX3R1sHYptGddUMoCOGSAicZi-jlP3TtBt_F7yKlpMCCqixSeEMZ70Lwtirefd1q_1kALn5UF1F18aO62KqOKxfbw8OyteVu4c9tBM43QG2t3Y2lEIpJRb8B7fuAWQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Abu, Avi</creator><creator>Diamant, Roee</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7757-1288</orcidid><orcidid>https://orcid.org/0000-0002-2430-7061</orcidid></search><sort><creationdate>20200101</creationdate><title>Enhanced Fuzzy-Based Local Information Algorithm for Sonar Image Segmentation</title><author>Abu, Avi ; Diamant, Roee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-cf955c26a1508df3733f256be1022111c62ca9fae86568807cdd2b8238690ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Fuzzy clustering</topic><topic>Historic sites</topic><topic>image de-noising</topic><topic>Image denoising</topic><topic>Image detection</topic><topic>Image enhancement</topic><topic>Image segmentation</topic><topic>Inhomogeneity</topic><topic>intensity inhomogeneity</topic><topic>kernel-induced distance</topic><topic>Noise reduction</topic><topic>Nonhomogeneous media</topic><topic>Ocean floor</topic><topic>Robustness</topic><topic>Sonar</topic><topic>sonar image segmentation</topic><topic>speckle noise</topic><topic>Synthetic aperture sonar</topic><topic>Synthetic apertures</topic><topic>Undersea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abu, Avi</creatorcontrib><creatorcontrib>Diamant, Roee</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abu, Avi</au><au>Diamant, Roee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Fuzzy-Based Local Information Algorithm for Sonar Image Segmentation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>29</volume><spage>445</spage><epage>460</epage><pages>445-460</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>The recent boost in undersea operations has led to the development of high-resolution sonar systems mounted on autonomous vehicles. These vehicles are used to scan the seafloor in search of different objects such as sunken ships, archaeological sites, and submerged mines. An important part of the detection operation is the segmentation of sonar images, where the object's highlight and shadow are distinguished from the seabed background. In this paper, we focus on the automatic segmentation of sonar images. We present our enhanced fuzzy-based with Kernel metric (EnFK) algorithm for the segmentation of sonar images which, in an attempt to improve segmentation accuracy, introduces two new fuzzy terms of local spatial and statistical information. Our algorithm includes a preliminary de-noising algorithm which, together with the original image, feeds into the segmentation procedure to avoid trapping to local minima and to improve convergence. The result is a segmentation procedure that specifically suits the intensity inhomogeneity and the complex seabed texture of sonar images. We tested our approach using simulated images, real sonar images, and sonar images that were created in two different sea experiments, using multibeam sonar and synthetic aperture sonar. The results show accurate segmentation performance that is far beyond the state-of-the-art results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31369376</pmid><doi>10.1109/TIP.2019.2930148</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7757-1288</orcidid><orcidid>https://orcid.org/0000-0002-2430-7061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2020-01, Vol.29, p.445-460
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_journals_2298707394
source IEEE Electronic Library (IEL)
subjects Algorithms
Computer simulation
Fuzzy clustering
Historic sites
image de-noising
Image denoising
Image detection
Image enhancement
Image segmentation
Inhomogeneity
intensity inhomogeneity
kernel-induced distance
Noise reduction
Nonhomogeneous media
Ocean floor
Robustness
Sonar
sonar image segmentation
speckle noise
Synthetic aperture sonar
Synthetic apertures
Undersea
title Enhanced Fuzzy-Based Local Information Algorithm for Sonar Image Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Fuzzy-Based%20Local%20Information%20Algorithm%20for%20Sonar%20Image%20Segmentation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Abu,%20Avi&rft.date=2020-01-01&rft.volume=29&rft.spage=445&rft.epage=460&rft.pages=445-460&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2019.2930148&rft_dat=%3Cproquest_RIE%3E2298707394%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298707394&rft_id=info:pmid/31369376&rft_ieee_id=8779589&rfr_iscdi=true