Multi-scale eigenvalues Empirical Mode Decomposition for geomagnetic signal filtering
•Empirical Mode Decomposition has trouble in finding dividing point and mode mixing.•Multi-scale eigenvalues is useful to restrain the mode mixing in filtering.•Autocorrelation ratio can help find the dividing point. Geomagnetic signals are susceptible to random magnetic signals and short-term, high...
Gespeichert in:
Veröffentlicht in: | Measurement : journal of the International Measurement Confederation 2019-11, Vol.146, p.885-891 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 891 |
---|---|
container_issue | |
container_start_page | 885 |
container_title | Measurement : journal of the International Measurement Confederation |
container_volume | 146 |
creator | Qiao, Nan Wang, Li-hui Liu, Qing-ya Zhai, Hong-qi |
description | •Empirical Mode Decomposition has trouble in finding dividing point and mode mixing.•Multi-scale eigenvalues is useful to restrain the mode mixing in filtering.•Autocorrelation ratio can help find the dividing point.
Geomagnetic signals are susceptible to random magnetic signals and short-term, high-amplitude magnetic signals. These interferences can bring nonlinear error and degrade the navigation accuracy. Traditional Empirical Mode Decomposition (EMD) can reduce the nonlinear error of geomagnetic signal. However, with the mode mixing and the poor stability of finding dividing point by using energy criterion, traditional EMD filter is limited. In this paper, multi-scale eigenvalues EMD (ME-EMD) is proposed. To solve the problem of mode mixing, multi-scale eigenvalues are analyzed to extract the interference signal. To find the precise dividing point, autocorrelation ratio is defined. ME-EMD estimates the SNR of intrinsic mode function (IMF) and finds the dividing point. Experiments demonstrate that ME-EMD can restrain the mode mixing and find the optimal dividing point, and the filter effect of ME-EMD is better than EMD with morphology, and Modified Ensemble EMD, etc., when the geomagnetic signal is interfered by transient signal. ME-EMD reduced the Root Mean Square Error from 23.3041 µT to 1.2689 µT. |
doi_str_mv | 10.1016/j.measurement.2019.07.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2298544343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224119306335</els_id><sourcerecordid>2298544343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-71f5daa7f3019ce2f2ad175c1df07c89fb647d65a98d1444b2a17aaab9b8a68a3</originalsourceid><addsrcrecordid>eNqNkE9LxDAUxIMouK5-h4rn1iRNm_Yo61_YxYsL3kKavpSUtqlJuuC3N8t68OjpwTAzzPshdEtwRjAp7_tsBOkXByNMIaOY1BnmGSb0DK1IxfOUEfp5jlaYlnlKKSOX6Mr7HmNc5nW5QvvdMgSTeiUHSMB0MB3ksIBPnsbZOBPlZGdbSB5B2XG23gRjp0Rbl3RgR9lNEIxKvOmm6NRmCODM1F2jCy0HDze_d432z08fm9d0-_7ytnnYpipndUg50UUrJdd53K2AaipbwgtFWo25qmrdlIy3ZSHrqiWMsYZKwqWUTd1UsqxkvkZ3p97Z2a-4OojeLi5O8YLSuioYy1keXfXJpZz13oEWszOjdN-CYHGkKHrxh6I4UhSYi0gxZjenLMQ3Dgac8MrApKA1DlQQrTX_aPkBBSqDcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298544343</pqid></control><display><type>article</type><title>Multi-scale eigenvalues Empirical Mode Decomposition for geomagnetic signal filtering</title><source>Access via ScienceDirect (Elsevier)</source><creator>Qiao, Nan ; Wang, Li-hui ; Liu, Qing-ya ; Zhai, Hong-qi</creator><creatorcontrib>Qiao, Nan ; Wang, Li-hui ; Liu, Qing-ya ; Zhai, Hong-qi</creatorcontrib><description>•Empirical Mode Decomposition has trouble in finding dividing point and mode mixing.•Multi-scale eigenvalues is useful to restrain the mode mixing in filtering.•Autocorrelation ratio can help find the dividing point.
Geomagnetic signals are susceptible to random magnetic signals and short-term, high-amplitude magnetic signals. These interferences can bring nonlinear error and degrade the navigation accuracy. Traditional Empirical Mode Decomposition (EMD) can reduce the nonlinear error of geomagnetic signal. However, with the mode mixing and the poor stability of finding dividing point by using energy criterion, traditional EMD filter is limited. In this paper, multi-scale eigenvalues EMD (ME-EMD) is proposed. To solve the problem of mode mixing, multi-scale eigenvalues are analyzed to extract the interference signal. To find the precise dividing point, autocorrelation ratio is defined. ME-EMD estimates the SNR of intrinsic mode function (IMF) and finds the dividing point. Experiments demonstrate that ME-EMD can restrain the mode mixing and find the optimal dividing point, and the filter effect of ME-EMD is better than EMD with morphology, and Modified Ensemble EMD, etc., when the geomagnetic signal is interfered by transient signal. ME-EMD reduced the Root Mean Square Error from 23.3041 µT to 1.2689 µT.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2019.07.012</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Autocorrelation ratio ; Decomposition ; Eigenvalues ; Empirical analysis ; Empirical Mode Decomposition ; Errors ; Filter ; Geomagnetic signal ; Geomagnetism ; Magnetic signals ; Magnetism ; Mean square errors ; Morphology ; Multi-scale eigenvalues ; Multiscale analysis ; Signal processing</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2019-11, Vol.146, p.885-891</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Nov 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-71f5daa7f3019ce2f2ad175c1df07c89fb647d65a98d1444b2a17aaab9b8a68a3</citedby><cites>FETCH-LOGICAL-c349t-71f5daa7f3019ce2f2ad175c1df07c89fb647d65a98d1444b2a17aaab9b8a68a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.measurement.2019.07.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Qiao, Nan</creatorcontrib><creatorcontrib>Wang, Li-hui</creatorcontrib><creatorcontrib>Liu, Qing-ya</creatorcontrib><creatorcontrib>Zhai, Hong-qi</creatorcontrib><title>Multi-scale eigenvalues Empirical Mode Decomposition for geomagnetic signal filtering</title><title>Measurement : journal of the International Measurement Confederation</title><description>•Empirical Mode Decomposition has trouble in finding dividing point and mode mixing.•Multi-scale eigenvalues is useful to restrain the mode mixing in filtering.•Autocorrelation ratio can help find the dividing point.
Geomagnetic signals are susceptible to random magnetic signals and short-term, high-amplitude magnetic signals. These interferences can bring nonlinear error and degrade the navigation accuracy. Traditional Empirical Mode Decomposition (EMD) can reduce the nonlinear error of geomagnetic signal. However, with the mode mixing and the poor stability of finding dividing point by using energy criterion, traditional EMD filter is limited. In this paper, multi-scale eigenvalues EMD (ME-EMD) is proposed. To solve the problem of mode mixing, multi-scale eigenvalues are analyzed to extract the interference signal. To find the precise dividing point, autocorrelation ratio is defined. ME-EMD estimates the SNR of intrinsic mode function (IMF) and finds the dividing point. Experiments demonstrate that ME-EMD can restrain the mode mixing and find the optimal dividing point, and the filter effect of ME-EMD is better than EMD with morphology, and Modified Ensemble EMD, etc., when the geomagnetic signal is interfered by transient signal. ME-EMD reduced the Root Mean Square Error from 23.3041 µT to 1.2689 µT.</description><subject>Autocorrelation ratio</subject><subject>Decomposition</subject><subject>Eigenvalues</subject><subject>Empirical analysis</subject><subject>Empirical Mode Decomposition</subject><subject>Errors</subject><subject>Filter</subject><subject>Geomagnetic signal</subject><subject>Geomagnetism</subject><subject>Magnetic signals</subject><subject>Magnetism</subject><subject>Mean square errors</subject><subject>Morphology</subject><subject>Multi-scale eigenvalues</subject><subject>Multiscale analysis</subject><subject>Signal processing</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LxDAUxIMouK5-h4rn1iRNm_Yo61_YxYsL3kKavpSUtqlJuuC3N8t68OjpwTAzzPshdEtwRjAp7_tsBOkXByNMIaOY1BnmGSb0DK1IxfOUEfp5jlaYlnlKKSOX6Mr7HmNc5nW5QvvdMgSTeiUHSMB0MB3ksIBPnsbZOBPlZGdbSB5B2XG23gRjp0Rbl3RgR9lNEIxKvOmm6NRmCODM1F2jCy0HDze_d432z08fm9d0-_7ytnnYpipndUg50UUrJdd53K2AaipbwgtFWo25qmrdlIy3ZSHrqiWMsYZKwqWUTd1UsqxkvkZ3p97Z2a-4OojeLi5O8YLSuioYy1keXfXJpZz13oEWszOjdN-CYHGkKHrxh6I4UhSYi0gxZjenLMQ3Dgac8MrApKA1DlQQrTX_aPkBBSqDcg</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Qiao, Nan</creator><creator>Wang, Li-hui</creator><creator>Liu, Qing-ya</creator><creator>Zhai, Hong-qi</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201911</creationdate><title>Multi-scale eigenvalues Empirical Mode Decomposition for geomagnetic signal filtering</title><author>Qiao, Nan ; Wang, Li-hui ; Liu, Qing-ya ; Zhai, Hong-qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-71f5daa7f3019ce2f2ad175c1df07c89fb647d65a98d1444b2a17aaab9b8a68a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autocorrelation ratio</topic><topic>Decomposition</topic><topic>Eigenvalues</topic><topic>Empirical analysis</topic><topic>Empirical Mode Decomposition</topic><topic>Errors</topic><topic>Filter</topic><topic>Geomagnetic signal</topic><topic>Geomagnetism</topic><topic>Magnetic signals</topic><topic>Magnetism</topic><topic>Mean square errors</topic><topic>Morphology</topic><topic>Multi-scale eigenvalues</topic><topic>Multiscale analysis</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Nan</creatorcontrib><creatorcontrib>Wang, Li-hui</creatorcontrib><creatorcontrib>Liu, Qing-ya</creatorcontrib><creatorcontrib>Zhai, Hong-qi</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Nan</au><au>Wang, Li-hui</au><au>Liu, Qing-ya</au><au>Zhai, Hong-qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale eigenvalues Empirical Mode Decomposition for geomagnetic signal filtering</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2019-11</date><risdate>2019</risdate><volume>146</volume><spage>885</spage><epage>891</epage><pages>885-891</pages><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•Empirical Mode Decomposition has trouble in finding dividing point and mode mixing.•Multi-scale eigenvalues is useful to restrain the mode mixing in filtering.•Autocorrelation ratio can help find the dividing point.
Geomagnetic signals are susceptible to random magnetic signals and short-term, high-amplitude magnetic signals. These interferences can bring nonlinear error and degrade the navigation accuracy. Traditional Empirical Mode Decomposition (EMD) can reduce the nonlinear error of geomagnetic signal. However, with the mode mixing and the poor stability of finding dividing point by using energy criterion, traditional EMD filter is limited. In this paper, multi-scale eigenvalues EMD (ME-EMD) is proposed. To solve the problem of mode mixing, multi-scale eigenvalues are analyzed to extract the interference signal. To find the precise dividing point, autocorrelation ratio is defined. ME-EMD estimates the SNR of intrinsic mode function (IMF) and finds the dividing point. Experiments demonstrate that ME-EMD can restrain the mode mixing and find the optimal dividing point, and the filter effect of ME-EMD is better than EMD with morphology, and Modified Ensemble EMD, etc., when the geomagnetic signal is interfered by transient signal. ME-EMD reduced the Root Mean Square Error from 23.3041 µT to 1.2689 µT.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2019.07.012</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-2241 |
ispartof | Measurement : journal of the International Measurement Confederation, 2019-11, Vol.146, p.885-891 |
issn | 0263-2241 1873-412X |
language | eng |
recordid | cdi_proquest_journals_2298544343 |
source | Access via ScienceDirect (Elsevier) |
subjects | Autocorrelation ratio Decomposition Eigenvalues Empirical analysis Empirical Mode Decomposition Errors Filter Geomagnetic signal Geomagnetism Magnetic signals Magnetism Mean square errors Morphology Multi-scale eigenvalues Multiscale analysis Signal processing |
title | Multi-scale eigenvalues Empirical Mode Decomposition for geomagnetic signal filtering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A10%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20eigenvalues%20Empirical%20Mode%20Decomposition%20for%20geomagnetic%20signal%20filtering&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Qiao,%20Nan&rft.date=2019-11&rft.volume=146&rft.spage=885&rft.epage=891&rft.pages=885-891&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2019.07.012&rft_dat=%3Cproquest_cross%3E2298544343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298544343&rft_id=info:pmid/&rft_els_id=S0263224119306335&rfr_iscdi=true |