UWB device for breast microwave imaging: phantom and clinical validations

•Huygens principle microwave imaging gives homogeneity maps of dielectric properties.•Microwave apparatus does not require any breast compression or any matching liquid.•MAX/AVG is used to measure the non-homogenous behavior of images.•Detection of inclusions in phantoms is achieved.•MAX/AVG is stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2019-11, Vol.146, p.582-589
Hauptverfasser: Vispa, Alessandro, Sani, Lorenzo, Paoli, Martina, Bigotti, Alessandra, Raspa, Giovanni, Ghavami, Navid, Caschera, Stefano, Ghavami, Mohammad, Duranti, Michele, Tiberi, Gianluigi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 589
container_issue
container_start_page 582
container_title Measurement : journal of the International Measurement Confederation
container_volume 146
creator Vispa, Alessandro
Sani, Lorenzo
Paoli, Martina
Bigotti, Alessandra
Raspa, Giovanni
Ghavami, Navid
Caschera, Stefano
Ghavami, Mohammad
Duranti, Michele
Tiberi, Gianluigi
description •Huygens principle microwave imaging gives homogeneity maps of dielectric properties.•Microwave apparatus does not require any breast compression or any matching liquid.•MAX/AVG is used to measure the non-homogenous behavior of images.•Detection of inclusions in phantoms is achieved.•MAX/AVG is statistically robust to discriminate between healthy/non-healthy breasts. Microwave imaging has received increasing attention in the last decades, motivated by its application in diagnostic imaging. Such effort has been encouraged by the fact that, at microwave frequencies, it is possible to distinguish between tissues with different dielectric properties. In such framework, a novel microwave device is presented here. The apparatus, consisting of two antennas operating in air, is completely safe and non-invasive since it does not emit any ionizing radiation and it can be used for breast lesion detection without requiring any breast crushing. We use Huygens Principle to provide a novel understanding into microwave imaging; specifically, the algorithm based on this principle provides images which represent homogeneity maps of the dielectric properties (dielectric constant and/or conductivity). The experimental results on phantoms having inclusions with different dielectric constants are presented here. In addition, the capability of the device to detect breast lesions has been verified through clinical examinations on 51 breasts. We introduce a metric to measure the non-homogenous behaviour of the image, establishing a modality to detect the presence of inclusions inside phantoms and, similarly, the presence of a lesion inside a breast.
doi_str_mv 10.1016/j.measurement.2019.05.109
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2298543328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224119306116</els_id><sourcerecordid>2298543328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-56d28f91d4c2da4d5d27f5ef6b3cd99f8fdfa4d6f39a25722a6c281839e7e5603</originalsourceid><addsrcrecordid>eNqNUMtKAzEUDaJgrf5DxPWMecxkJu60-CgU3Fh0F9LkpmaYR02mI_69kbpw6erCeV3OQeiSkpwSKq6bvAMd9wE66MecESpzUiZKHqEZrSueFZS9HaMZYYJnjBX0FJ3F2BBCBJdihpbr1ztsYfIGsBsC3oQUN-LOmzB86gmw7_TW99sbvHvX_Th0WPcWm9b33ugWT7r1Vo9-6OM5OnG6jXDxe-do_XD_snjKVs-Py8XtKjMFIWNWCstqJ6ktDLO6sKVllSvBiQ03VkpXO-sSLByXmpUVY1oYVtOaS6igFITP0dUhdxeGjz3EUTXDPvTppWJM1mXBOauTSh5UqUeMAZzahVQlfClK1M9yqlF_llM_yylSJkom7-LghVRj8hBUNB56A9YHMKOyg_9HyjcIFH4F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298543328</pqid></control><display><type>article</type><title>UWB device for breast microwave imaging: phantom and clinical validations</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Vispa, Alessandro ; Sani, Lorenzo ; Paoli, Martina ; Bigotti, Alessandra ; Raspa, Giovanni ; Ghavami, Navid ; Caschera, Stefano ; Ghavami, Mohammad ; Duranti, Michele ; Tiberi, Gianluigi</creator><creatorcontrib>Vispa, Alessandro ; Sani, Lorenzo ; Paoli, Martina ; Bigotti, Alessandra ; Raspa, Giovanni ; Ghavami, Navid ; Caschera, Stefano ; Ghavami, Mohammad ; Duranti, Michele ; Tiberi, Gianluigi</creatorcontrib><description>•Huygens principle microwave imaging gives homogeneity maps of dielectric properties.•Microwave apparatus does not require any breast compression or any matching liquid.•MAX/AVG is used to measure the non-homogenous behavior of images.•Detection of inclusions in phantoms is achieved.•MAX/AVG is statistically robust to discriminate between healthy/non-healthy breasts. Microwave imaging has received increasing attention in the last decades, motivated by its application in diagnostic imaging. Such effort has been encouraged by the fact that, at microwave frequencies, it is possible to distinguish between tissues with different dielectric properties. In such framework, a novel microwave device is presented here. The apparatus, consisting of two antennas operating in air, is completely safe and non-invasive since it does not emit any ionizing radiation and it can be used for breast lesion detection without requiring any breast crushing. We use Huygens Principle to provide a novel understanding into microwave imaging; specifically, the algorithm based on this principle provides images which represent homogeneity maps of the dielectric properties (dielectric constant and/or conductivity). The experimental results on phantoms having inclusions with different dielectric constants are presented here. In addition, the capability of the device to detect breast lesions has been verified through clinical examinations on 51 breasts. We introduce a metric to measure the non-homogenous behaviour of the image, establishing a modality to detect the presence of inclusions inside phantoms and, similarly, the presence of a lesion inside a breast.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2019.05.109</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Algorithms ; Breast cancer ; Breast imaging ; Diagnostic software ; Diagnostic systems ; Dielectric properties ; Huygens principle ; Image detection ; Image processing systems ; Inclusions ; Ionizing radiation ; Mammography ; Medical diagnosis ; Microwave frequencies ; Microwave imaging ; Microwaves ; Permittivity ; Ultra wideband technology</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2019-11, Vol.146, p.582-589</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Nov 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-56d28f91d4c2da4d5d27f5ef6b3cd99f8fdfa4d6f39a25722a6c281839e7e5603</citedby><cites>FETCH-LOGICAL-c400t-56d28f91d4c2da4d5d27f5ef6b3cd99f8fdfa4d6f39a25722a6c281839e7e5603</cites><orcidid>0000-0001-6307-921X ; 0000-0002-8069-3892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.measurement.2019.05.109$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Vispa, Alessandro</creatorcontrib><creatorcontrib>Sani, Lorenzo</creatorcontrib><creatorcontrib>Paoli, Martina</creatorcontrib><creatorcontrib>Bigotti, Alessandra</creatorcontrib><creatorcontrib>Raspa, Giovanni</creatorcontrib><creatorcontrib>Ghavami, Navid</creatorcontrib><creatorcontrib>Caschera, Stefano</creatorcontrib><creatorcontrib>Ghavami, Mohammad</creatorcontrib><creatorcontrib>Duranti, Michele</creatorcontrib><creatorcontrib>Tiberi, Gianluigi</creatorcontrib><title>UWB device for breast microwave imaging: phantom and clinical validations</title><title>Measurement : journal of the International Measurement Confederation</title><description>•Huygens principle microwave imaging gives homogeneity maps of dielectric properties.•Microwave apparatus does not require any breast compression or any matching liquid.•MAX/AVG is used to measure the non-homogenous behavior of images.•Detection of inclusions in phantoms is achieved.•MAX/AVG is statistically robust to discriminate between healthy/non-healthy breasts. Microwave imaging has received increasing attention in the last decades, motivated by its application in diagnostic imaging. Such effort has been encouraged by the fact that, at microwave frequencies, it is possible to distinguish between tissues with different dielectric properties. In such framework, a novel microwave device is presented here. The apparatus, consisting of two antennas operating in air, is completely safe and non-invasive since it does not emit any ionizing radiation and it can be used for breast lesion detection without requiring any breast crushing. We use Huygens Principle to provide a novel understanding into microwave imaging; specifically, the algorithm based on this principle provides images which represent homogeneity maps of the dielectric properties (dielectric constant and/or conductivity). The experimental results on phantoms having inclusions with different dielectric constants are presented here. In addition, the capability of the device to detect breast lesions has been verified through clinical examinations on 51 breasts. We introduce a metric to measure the non-homogenous behaviour of the image, establishing a modality to detect the presence of inclusions inside phantoms and, similarly, the presence of a lesion inside a breast.</description><subject>Algorithms</subject><subject>Breast cancer</subject><subject>Breast imaging</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Dielectric properties</subject><subject>Huygens principle</subject><subject>Image detection</subject><subject>Image processing systems</subject><subject>Inclusions</subject><subject>Ionizing radiation</subject><subject>Mammography</subject><subject>Medical diagnosis</subject><subject>Microwave frequencies</subject><subject>Microwave imaging</subject><subject>Microwaves</subject><subject>Permittivity</subject><subject>Ultra wideband technology</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUMtKAzEUDaJgrf5DxPWMecxkJu60-CgU3Fh0F9LkpmaYR02mI_69kbpw6erCeV3OQeiSkpwSKq6bvAMd9wE66MecESpzUiZKHqEZrSueFZS9HaMZYYJnjBX0FJ3F2BBCBJdihpbr1ztsYfIGsBsC3oQUN-LOmzB86gmw7_TW99sbvHvX_Th0WPcWm9b33ugWT7r1Vo9-6OM5OnG6jXDxe-do_XD_snjKVs-Py8XtKjMFIWNWCstqJ6ktDLO6sKVllSvBiQ03VkpXO-sSLByXmpUVY1oYVtOaS6igFITP0dUhdxeGjz3EUTXDPvTppWJM1mXBOauTSh5UqUeMAZzahVQlfClK1M9yqlF_llM_yylSJkom7-LghVRj8hBUNB56A9YHMKOyg_9HyjcIFH4F</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Vispa, Alessandro</creator><creator>Sani, Lorenzo</creator><creator>Paoli, Martina</creator><creator>Bigotti, Alessandra</creator><creator>Raspa, Giovanni</creator><creator>Ghavami, Navid</creator><creator>Caschera, Stefano</creator><creator>Ghavami, Mohammad</creator><creator>Duranti, Michele</creator><creator>Tiberi, Gianluigi</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6307-921X</orcidid><orcidid>https://orcid.org/0000-0002-8069-3892</orcidid></search><sort><creationdate>201911</creationdate><title>UWB device for breast microwave imaging: phantom and clinical validations</title><author>Vispa, Alessandro ; Sani, Lorenzo ; Paoli, Martina ; Bigotti, Alessandra ; Raspa, Giovanni ; Ghavami, Navid ; Caschera, Stefano ; Ghavami, Mohammad ; Duranti, Michele ; Tiberi, Gianluigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-56d28f91d4c2da4d5d27f5ef6b3cd99f8fdfa4d6f39a25722a6c281839e7e5603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Breast cancer</topic><topic>Breast imaging</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Dielectric properties</topic><topic>Huygens principle</topic><topic>Image detection</topic><topic>Image processing systems</topic><topic>Inclusions</topic><topic>Ionizing radiation</topic><topic>Mammography</topic><topic>Medical diagnosis</topic><topic>Microwave frequencies</topic><topic>Microwave imaging</topic><topic>Microwaves</topic><topic>Permittivity</topic><topic>Ultra wideband technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vispa, Alessandro</creatorcontrib><creatorcontrib>Sani, Lorenzo</creatorcontrib><creatorcontrib>Paoli, Martina</creatorcontrib><creatorcontrib>Bigotti, Alessandra</creatorcontrib><creatorcontrib>Raspa, Giovanni</creatorcontrib><creatorcontrib>Ghavami, Navid</creatorcontrib><creatorcontrib>Caschera, Stefano</creatorcontrib><creatorcontrib>Ghavami, Mohammad</creatorcontrib><creatorcontrib>Duranti, Michele</creatorcontrib><creatorcontrib>Tiberi, Gianluigi</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vispa, Alessandro</au><au>Sani, Lorenzo</au><au>Paoli, Martina</au><au>Bigotti, Alessandra</au><au>Raspa, Giovanni</au><au>Ghavami, Navid</au><au>Caschera, Stefano</au><au>Ghavami, Mohammad</au><au>Duranti, Michele</au><au>Tiberi, Gianluigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UWB device for breast microwave imaging: phantom and clinical validations</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2019-11</date><risdate>2019</risdate><volume>146</volume><spage>582</spage><epage>589</epage><pages>582-589</pages><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•Huygens principle microwave imaging gives homogeneity maps of dielectric properties.•Microwave apparatus does not require any breast compression or any matching liquid.•MAX/AVG is used to measure the non-homogenous behavior of images.•Detection of inclusions in phantoms is achieved.•MAX/AVG is statistically robust to discriminate between healthy/non-healthy breasts. Microwave imaging has received increasing attention in the last decades, motivated by its application in diagnostic imaging. Such effort has been encouraged by the fact that, at microwave frequencies, it is possible to distinguish between tissues with different dielectric properties. In such framework, a novel microwave device is presented here. The apparatus, consisting of two antennas operating in air, is completely safe and non-invasive since it does not emit any ionizing radiation and it can be used for breast lesion detection without requiring any breast crushing. We use Huygens Principle to provide a novel understanding into microwave imaging; specifically, the algorithm based on this principle provides images which represent homogeneity maps of the dielectric properties (dielectric constant and/or conductivity). The experimental results on phantoms having inclusions with different dielectric constants are presented here. In addition, the capability of the device to detect breast lesions has been verified through clinical examinations on 51 breasts. We introduce a metric to measure the non-homogenous behaviour of the image, establishing a modality to detect the presence of inclusions inside phantoms and, similarly, the presence of a lesion inside a breast.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2019.05.109</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6307-921X</orcidid><orcidid>https://orcid.org/0000-0002-8069-3892</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2019-11, Vol.146, p.582-589
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_journals_2298543328
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Breast cancer
Breast imaging
Diagnostic software
Diagnostic systems
Dielectric properties
Huygens principle
Image detection
Image processing systems
Inclusions
Ionizing radiation
Mammography
Medical diagnosis
Microwave frequencies
Microwave imaging
Microwaves
Permittivity
Ultra wideband technology
title UWB device for breast microwave imaging: phantom and clinical validations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UWB%20device%20for%20breast%20microwave%20imaging:%20phantom%20and%20clinical%20validations&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Vispa,%20Alessandro&rft.date=2019-11&rft.volume=146&rft.spage=582&rft.epage=589&rft.pages=582-589&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2019.05.109&rft_dat=%3Cproquest_cross%3E2298543328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298543328&rft_id=info:pmid/&rft_els_id=S0263224119306116&rfr_iscdi=true