Latent semantic analysis as a tool for learner positioning in learning networks for lifelong learning

As we move towards distributed, self‐organised learning networks for lifelong learning to which multiple providers contribute content, there is a need to develop new techniques to determine where learners can be positioned in these networks. Positioning requires us to map characteristics of the lear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of educational technology 2004-11, Vol.35 (6), p.729-738
Hauptverfasser: Van Bruggen, Jan, Sloep, Peter, Van Rosmalen, Peter, Brouns, Francis, Vogten, Hubert, Koper, Rob, Tattersall, Colin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 738
container_issue 6
container_start_page 729
container_title British journal of educational technology
container_volume 35
creator Van Bruggen, Jan
Sloep, Peter
Van Rosmalen, Peter
Brouns, Francis
Vogten, Hubert
Koper, Rob
Tattersall, Colin
description As we move towards distributed, self‐organised learning networks for lifelong learning to which multiple providers contribute content, there is a need to develop new techniques to determine where learners can be positioned in these networks. Positioning requires us to map characteristics of the learner onto characteristics  of  learning  materials  and  curricula.  Considering  the  nature of the network envisaged, maintaining data on these characteristics and ensuring their integrity are difficult tasks. In this article we review the usability of Latent Semantic Analysis (LSA) to generate a common semantic framework for characteristics of the learner, learning materials and curricula. Although LSA is a promising technique we identify several research topics that must be addressed before it can be used for learner positioning.
doi_str_mv 10.1111/j.1467-8535.2004.00430.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_229845592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ685302</ericid><sourcerecordid>820226211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5420-9b080fd9288cdeeb3b4c3cdf02cdfd7a4a2b97c0fbef5ce9b77034610ce417523</originalsourceid><addsrcrecordid>eNqNUM9v2yAURtUmLev6H-yAdrf7MGDsww5blXaNovbQVukNYfJckbgmA1dJ_vvhest5CB6P9_2Q-AihDHKW1uUmZ6JUWSW5zAsAkafDIT-ckdkJ-EBmAKAyBox_Ip9j3KQncClmBJdmwH6gEV9NPzhLTW-6Y3SRmrTp4H1HWx9ohyb0GOjORzc437v-hbp-Go99j8Peh22cyK7FzqfpP_gL-diaLuLF3_ucPF3PH69-Zcv7m9urH8vMSlFAVjdQQbuui6qya8SGN8Jyu26hSGWtjDBFUysLbYOttFg3SgEXJQOLgilZ8HPybfLdBf_7DeOgN_4tpB9FXRR1JaSsR1I1kWzwMQZs9S64VxOOmoEeM9UbPUanx-j0mKl-z1QfkvTrJMXg7Ek2X5SJCqPz9wneuw6P_22rfy7mj6lL-mzSuzjg4aQ3YatLxZXUq7sbXYryoWSLlX7mfwBCTZdU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229845592</pqid></control><display><type>article</type><title>Latent semantic analysis as a tool for learner positioning in learning networks for lifelong learning</title><source>Access via Wiley Online Library</source><source>EBSCOhost Education Source</source><creator>Van Bruggen, Jan ; Sloep, Peter ; Van Rosmalen, Peter ; Brouns, Francis ; Vogten, Hubert ; Koper, Rob ; Tattersall, Colin</creator><creatorcontrib>Van Bruggen, Jan ; Sloep, Peter ; Van Rosmalen, Peter ; Brouns, Francis ; Vogten, Hubert ; Koper, Rob ; Tattersall, Colin</creatorcontrib><description>As we move towards distributed, self‐organised learning networks for lifelong learning to which multiple providers contribute content, there is a need to develop new techniques to determine where learners can be positioned in these networks. Positioning requires us to map characteristics of the learner onto characteristics  of  learning  materials  and  curricula.  Considering  the  nature of the network envisaged, maintaining data on these characteristics and ensuring their integrity are difficult tasks. In this article we review the usability of Latent Semantic Analysis (LSA) to generate a common semantic framework for characteristics of the learner, learning materials and curricula. Although LSA is a promising technique we identify several research topics that must be addressed before it can be used for learner positioning.</description><identifier>ISSN: 0007-1013</identifier><identifier>EISSN: 1467-8535</identifier><identifier>DOI: 10.1111/j.1467-8535.2004.00430.x</identifier><identifier>CODEN: BJETAH</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adult Learning ; Curriculum ; Instructional Materials ; Integrity ; Lifelong Learning ; Semantics ; Student Characteristics</subject><ispartof>British journal of educational technology, 2004-11, Vol.35 (6), p.729-738</ispartof><rights>British Educational Communications and Technology Agency, 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5420-9b080fd9288cdeeb3b4c3cdf02cdfd7a4a2b97c0fbef5ce9b77034610ce417523</citedby><cites>FETCH-LOGICAL-c5420-9b080fd9288cdeeb3b4c3cdf02cdfd7a4a2b97c0fbef5ce9b77034610ce417523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-8535.2004.00430.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-8535.2004.00430.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ685302$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Bruggen, Jan</creatorcontrib><creatorcontrib>Sloep, Peter</creatorcontrib><creatorcontrib>Van Rosmalen, Peter</creatorcontrib><creatorcontrib>Brouns, Francis</creatorcontrib><creatorcontrib>Vogten, Hubert</creatorcontrib><creatorcontrib>Koper, Rob</creatorcontrib><creatorcontrib>Tattersall, Colin</creatorcontrib><title>Latent semantic analysis as a tool for learner positioning in learning networks for lifelong learning</title><title>British journal of educational technology</title><description>As we move towards distributed, self‐organised learning networks for lifelong learning to which multiple providers contribute content, there is a need to develop new techniques to determine where learners can be positioned in these networks. Positioning requires us to map characteristics of the learner onto characteristics  of  learning  materials  and  curricula.  Considering  the  nature of the network envisaged, maintaining data on these characteristics and ensuring their integrity are difficult tasks. In this article we review the usability of Latent Semantic Analysis (LSA) to generate a common semantic framework for characteristics of the learner, learning materials and curricula. Although LSA is a promising technique we identify several research topics that must be addressed before it can be used for learner positioning.</description><subject>Adult Learning</subject><subject>Curriculum</subject><subject>Instructional Materials</subject><subject>Integrity</subject><subject>Lifelong Learning</subject><subject>Semantics</subject><subject>Student Characteristics</subject><issn>0007-1013</issn><issn>1467-8535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNUM9v2yAURtUmLev6H-yAdrf7MGDsww5blXaNovbQVukNYfJckbgmA1dJ_vvhest5CB6P9_2Q-AihDHKW1uUmZ6JUWSW5zAsAkafDIT-ckdkJ-EBmAKAyBox_Ip9j3KQncClmBJdmwH6gEV9NPzhLTW-6Y3SRmrTp4H1HWx9ohyb0GOjORzc437v-hbp-Go99j8Peh22cyK7FzqfpP_gL-diaLuLF3_ucPF3PH69-Zcv7m9urH8vMSlFAVjdQQbuui6qya8SGN8Jyu26hSGWtjDBFUysLbYOttFg3SgEXJQOLgilZ8HPybfLdBf_7DeOgN_4tpB9FXRR1JaSsR1I1kWzwMQZs9S64VxOOmoEeM9UbPUanx-j0mKl-z1QfkvTrJMXg7Ek2X5SJCqPz9wneuw6P_22rfy7mj6lL-mzSuzjg4aQ3YatLxZXUq7sbXYryoWSLlX7mfwBCTZdU</recordid><startdate>200411</startdate><enddate>200411</enddate><creator>Van Bruggen, Jan</creator><creator>Sloep, Peter</creator><creator>Van Rosmalen, Peter</creator><creator>Brouns, Francis</creator><creator>Vogten, Hubert</creator><creator>Koper, Rob</creator><creator>Tattersall, Colin</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishing</general><scope>BSCLL</scope><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200411</creationdate><title>Latent semantic analysis as a tool for learner positioning in learning networks for lifelong learning</title><author>Van Bruggen, Jan ; Sloep, Peter ; Van Rosmalen, Peter ; Brouns, Francis ; Vogten, Hubert ; Koper, Rob ; Tattersall, Colin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5420-9b080fd9288cdeeb3b4c3cdf02cdfd7a4a2b97c0fbef5ce9b77034610ce417523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adult Learning</topic><topic>Curriculum</topic><topic>Instructional Materials</topic><topic>Integrity</topic><topic>Lifelong Learning</topic><topic>Semantics</topic><topic>Student Characteristics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Bruggen, Jan</creatorcontrib><creatorcontrib>Sloep, Peter</creatorcontrib><creatorcontrib>Van Rosmalen, Peter</creatorcontrib><creatorcontrib>Brouns, Francis</creatorcontrib><creatorcontrib>Vogten, Hubert</creatorcontrib><creatorcontrib>Koper, Rob</creatorcontrib><creatorcontrib>Tattersall, Colin</creatorcontrib><collection>Istex</collection><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>British journal of educational technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Bruggen, Jan</au><au>Sloep, Peter</au><au>Van Rosmalen, Peter</au><au>Brouns, Francis</au><au>Vogten, Hubert</au><au>Koper, Rob</au><au>Tattersall, Colin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ685302</ericid><atitle>Latent semantic analysis as a tool for learner positioning in learning networks for lifelong learning</atitle><jtitle>British journal of educational technology</jtitle><date>2004-11</date><risdate>2004</risdate><volume>35</volume><issue>6</issue><spage>729</spage><epage>738</epage><pages>729-738</pages><issn>0007-1013</issn><eissn>1467-8535</eissn><coden>BJETAH</coden><abstract>As we move towards distributed, self‐organised learning networks for lifelong learning to which multiple providers contribute content, there is a need to develop new techniques to determine where learners can be positioned in these networks. Positioning requires us to map characteristics of the learner onto characteristics  of  learning  materials  and  curricula.  Considering  the  nature of the network envisaged, maintaining data on these characteristics and ensuring their integrity are difficult tasks. In this article we review the usability of Latent Semantic Analysis (LSA) to generate a common semantic framework for characteristics of the learner, learning materials and curricula. Although LSA is a promising technique we identify several research topics that must be addressed before it can be used for learner positioning.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-8535.2004.00430.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1013
ispartof British journal of educational technology, 2004-11, Vol.35 (6), p.729-738
issn 0007-1013
1467-8535
language eng
recordid cdi_proquest_journals_229845592
source Access via Wiley Online Library; EBSCOhost Education Source
subjects Adult Learning
Curriculum
Instructional Materials
Integrity
Lifelong Learning
Semantics
Student Characteristics
title Latent semantic analysis as a tool for learner positioning in learning networks for lifelong learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Latent%20semantic%20analysis%20as%20a%20tool%20for%20learner%20positioning%20in%20learning%20networks%20for%20lifelong%20learning&rft.jtitle=British%20journal%20of%20educational%20technology&rft.au=Van%20Bruggen,%20Jan&rft.date=2004-11&rft.volume=35&rft.issue=6&rft.spage=729&rft.epage=738&rft.pages=729-738&rft.issn=0007-1013&rft.eissn=1467-8535&rft.coden=BJETAH&rft_id=info:doi/10.1111/j.1467-8535.2004.00430.x&rft_dat=%3Cproquest_cross%3E820226211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=229845592&rft_id=info:pmid/&rft_ericid=EJ685302&rfr_iscdi=true