Formation of New Glass-Ceramic Materials with Controllable Dielectric and Magnetic Properties
Materials with strong susceptibility with respect to the electromagnetic field, namely, ferroelectric (FE) and ferromagnetic (FM) materials are of great interest for modern electronics. On the basis of ferroelectrics, devices such as varicades, delay lines, phase shifters, etc. are being actively de...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2019-09, Vol.822, p.856-863 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 863 |
---|---|
container_issue | |
container_start_page | 856 |
container_title | Key engineering materials |
container_volume | 822 |
creator | Sinelshchikova, Olga Yu Tumarkin, Andrei V. Sviridov, Sergey I. Drozdovskii, Andrey V. Vlasenko, Natalya S. Tyurnina, Zoya G. Tyurnina, Natalya |
description | Materials with strong susceptibility with respect to the electromagnetic field, namely, ferroelectric (FE) and ferromagnetic (FM) materials are of great interest for modern electronics. On the basis of ferroelectrics, devices such as varicades, delay lines, phase shifters, etc. are being actively developed. Ferromagnets (primarily ferrites) serve as the basis for directional couplers, circulators, valves, filters, phased antenna arrays, etc. Today, the most common method of creating functional composites, combining dielectric and magnetic properties, is the introduction of classical ferroelectrics, such as triglycine sulfate, Siegnette salt (KNaC4H4O6∙4H2O), sodium nitrite, etc. in iron-containing matrices. The relevance of this approach is due to the fact that when a ferroelectric is introduced into the FM matrix, it becomes possible to create composite multiferroic materials with two types of ordering (electric and magnetic). In this paper, we study the possibilities of creating glass-ceramic multiferroic materials based on Siegnette salt and barium titanate, introduced in the pore space of ferromagnetic glass, formed by ion exchange between alkaline glass cations and salt melt. For obtaining porous glass-ceramic materials by the method of ion exchange, potassium iron-containing silicate glasses are used in the work. 15K2O·20Fe2O3·55SiO2, mol. % (KFeSi). |
doi_str_mv | 10.4028/www.scientific.net/KEM.822.856 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2298391246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2298391246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2716-d19053254ed2a2a9d32073bbb530f3e854b5abda97243fca15c783e754b305083</originalsourceid><addsrcrecordid>eNqNkF1LwzAUhoMoOKf_oSB41y4fTZveiDK3KW7qhV5KSNNTl9E1M8ko_nsjE7z16nzwnvec8yB0RXCWYyomwzBkXhvog2mNznoIk8fZKhOUZoIXR2hEioKmVVnx45hjwtJK0OIUnXm_wZgRQfgIvc-t26pgbJ_YNnmCIVl0yvt0Ck5tjU5WKoAzqvPJYMI6mdo-ONt1qu4guTPQgQ4uylTfROlHvCEWL87uwAUD_hydtHEWLn7jGL3NZ6_T-3T5vHiY3i5TTUtSpA2pMGeU59BQRVXVMIpLVtc1Z7hlIHhec1U3qippzlqtCNelYFDGPsMcCzZGlwffnbOfe_BBbuze9XGlpLQSrCI0L6Lq-qDSznrvoJU7Z7bKfUmC5Q9SGZHKP6QyviMjUhmRyog0GtwcDIJTvQ-g1397_mnxDbsdiEo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298391246</pqid></control><display><type>article</type><title>Formation of New Glass-Ceramic Materials with Controllable Dielectric and Magnetic Properties</title><source>Scientific.net Journals</source><creator>Sinelshchikova, Olga Yu ; Tumarkin, Andrei V. ; Sviridov, Sergey I. ; Drozdovskii, Andrey V. ; Vlasenko, Natalya S. ; Tyurnina, Zoya G. ; Tyurnina, Natalya</creator><creatorcontrib>Sinelshchikova, Olga Yu ; Tumarkin, Andrei V. ; Sviridov, Sergey I. ; Drozdovskii, Andrey V. ; Vlasenko, Natalya S. ; Tyurnina, Zoya G. ; Tyurnina, Natalya</creatorcontrib><description>Materials with strong susceptibility with respect to the electromagnetic field, namely, ferroelectric (FE) and ferromagnetic (FM) materials are of great interest for modern electronics. On the basis of ferroelectrics, devices such as varicades, delay lines, phase shifters, etc. are being actively developed. Ferromagnets (primarily ferrites) serve as the basis for directional couplers, circulators, valves, filters, phased antenna arrays, etc. Today, the most common method of creating functional composites, combining dielectric and magnetic properties, is the introduction of classical ferroelectrics, such as triglycine sulfate, Siegnette salt (KNaC4H4O6∙4H2O), sodium nitrite, etc. in iron-containing matrices. The relevance of this approach is due to the fact that when a ferroelectric is introduced into the FM matrix, it becomes possible to create composite multiferroic materials with two types of ordering (electric and magnetic). In this paper, we study the possibilities of creating glass-ceramic multiferroic materials based on Siegnette salt and barium titanate, introduced in the pore space of ferromagnetic glass, formed by ion exchange between alkaline glass cations and salt melt. For obtaining porous glass-ceramic materials by the method of ion exchange, potassium iron-containing silicate glasses are used in the work. 15K2O·20Fe2O3·55SiO2, mol. % (KFeSi).</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.822.856</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Antenna arrays ; Barium titanates ; Delay lines ; Dielectric properties ; Dielectric strength ; Directional couplers ; Electric filters ; Electromagnetic fields ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Ferromagnetic materials ; Glass ceramics ; Ion exchange ; Iron ; Magnetic permeability ; Magnetic properties ; Multiferroic materials ; Phase shifters ; Porous materials ; Sodium nitrite ; Triglycine sulfate</subject><ispartof>Key engineering materials, 2019-09, Vol.822, p.856-863</ispartof><rights>2019 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2716-d19053254ed2a2a9d32073bbb530f3e854b5abda97243fca15c783e754b305083</citedby><cites>FETCH-LOGICAL-c2716-d19053254ed2a2a9d32073bbb530f3e854b5abda97243fca15c783e754b305083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/5975?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sinelshchikova, Olga Yu</creatorcontrib><creatorcontrib>Tumarkin, Andrei V.</creatorcontrib><creatorcontrib>Sviridov, Sergey I.</creatorcontrib><creatorcontrib>Drozdovskii, Andrey V.</creatorcontrib><creatorcontrib>Vlasenko, Natalya S.</creatorcontrib><creatorcontrib>Tyurnina, Zoya G.</creatorcontrib><creatorcontrib>Tyurnina, Natalya</creatorcontrib><title>Formation of New Glass-Ceramic Materials with Controllable Dielectric and Magnetic Properties</title><title>Key engineering materials</title><description>Materials with strong susceptibility with respect to the electromagnetic field, namely, ferroelectric (FE) and ferromagnetic (FM) materials are of great interest for modern electronics. On the basis of ferroelectrics, devices such as varicades, delay lines, phase shifters, etc. are being actively developed. Ferromagnets (primarily ferrites) serve as the basis for directional couplers, circulators, valves, filters, phased antenna arrays, etc. Today, the most common method of creating functional composites, combining dielectric and magnetic properties, is the introduction of classical ferroelectrics, such as triglycine sulfate, Siegnette salt (KNaC4H4O6∙4H2O), sodium nitrite, etc. in iron-containing matrices. The relevance of this approach is due to the fact that when a ferroelectric is introduced into the FM matrix, it becomes possible to create composite multiferroic materials with two types of ordering (electric and magnetic). In this paper, we study the possibilities of creating glass-ceramic multiferroic materials based on Siegnette salt and barium titanate, introduced in the pore space of ferromagnetic glass, formed by ion exchange between alkaline glass cations and salt melt. For obtaining porous glass-ceramic materials by the method of ion exchange, potassium iron-containing silicate glasses are used in the work. 15K2O·20Fe2O3·55SiO2, mol. % (KFeSi).</description><subject>Antenna arrays</subject><subject>Barium titanates</subject><subject>Delay lines</subject><subject>Dielectric properties</subject><subject>Dielectric strength</subject><subject>Directional couplers</subject><subject>Electric filters</subject><subject>Electromagnetic fields</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Ferromagnetic materials</subject><subject>Glass ceramics</subject><subject>Ion exchange</subject><subject>Iron</subject><subject>Magnetic permeability</subject><subject>Magnetic properties</subject><subject>Multiferroic materials</subject><subject>Phase shifters</subject><subject>Porous materials</subject><subject>Sodium nitrite</subject><subject>Triglycine sulfate</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkF1LwzAUhoMoOKf_oSB41y4fTZveiDK3KW7qhV5KSNNTl9E1M8ko_nsjE7z16nzwnvec8yB0RXCWYyomwzBkXhvog2mNznoIk8fZKhOUZoIXR2hEioKmVVnx45hjwtJK0OIUnXm_wZgRQfgIvc-t26pgbJ_YNnmCIVl0yvt0Ck5tjU5WKoAzqvPJYMI6mdo-ONt1qu4guTPQgQ4uylTfROlHvCEWL87uwAUD_hydtHEWLn7jGL3NZ6_T-3T5vHiY3i5TTUtSpA2pMGeU59BQRVXVMIpLVtc1Z7hlIHhec1U3qippzlqtCNelYFDGPsMcCzZGlwffnbOfe_BBbuze9XGlpLQSrCI0L6Lq-qDSznrvoJU7Z7bKfUmC5Q9SGZHKP6QyviMjUhmRyog0GtwcDIJTvQ-g1397_mnxDbsdiEo</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Sinelshchikova, Olga Yu</creator><creator>Tumarkin, Andrei V.</creator><creator>Sviridov, Sergey I.</creator><creator>Drozdovskii, Andrey V.</creator><creator>Vlasenko, Natalya S.</creator><creator>Tyurnina, Zoya G.</creator><creator>Tyurnina, Natalya</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190901</creationdate><title>Formation of New Glass-Ceramic Materials with Controllable Dielectric and Magnetic Properties</title><author>Sinelshchikova, Olga Yu ; Tumarkin, Andrei V. ; Sviridov, Sergey I. ; Drozdovskii, Andrey V. ; Vlasenko, Natalya S. ; Tyurnina, Zoya G. ; Tyurnina, Natalya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2716-d19053254ed2a2a9d32073bbb530f3e854b5abda97243fca15c783e754b305083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antenna arrays</topic><topic>Barium titanates</topic><topic>Delay lines</topic><topic>Dielectric properties</topic><topic>Dielectric strength</topic><topic>Directional couplers</topic><topic>Electric filters</topic><topic>Electromagnetic fields</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Ferromagnetic materials</topic><topic>Glass ceramics</topic><topic>Ion exchange</topic><topic>Iron</topic><topic>Magnetic permeability</topic><topic>Magnetic properties</topic><topic>Multiferroic materials</topic><topic>Phase shifters</topic><topic>Porous materials</topic><topic>Sodium nitrite</topic><topic>Triglycine sulfate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinelshchikova, Olga Yu</creatorcontrib><creatorcontrib>Tumarkin, Andrei V.</creatorcontrib><creatorcontrib>Sviridov, Sergey I.</creatorcontrib><creatorcontrib>Drozdovskii, Andrey V.</creatorcontrib><creatorcontrib>Vlasenko, Natalya S.</creatorcontrib><creatorcontrib>Tyurnina, Zoya G.</creatorcontrib><creatorcontrib>Tyurnina, Natalya</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinelshchikova, Olga Yu</au><au>Tumarkin, Andrei V.</au><au>Sviridov, Sergey I.</au><au>Drozdovskii, Andrey V.</au><au>Vlasenko, Natalya S.</au><au>Tyurnina, Zoya G.</au><au>Tyurnina, Natalya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation of New Glass-Ceramic Materials with Controllable Dielectric and Magnetic Properties</atitle><jtitle>Key engineering materials</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>822</volume><spage>856</spage><epage>863</epage><pages>856-863</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>Materials with strong susceptibility with respect to the electromagnetic field, namely, ferroelectric (FE) and ferromagnetic (FM) materials are of great interest for modern electronics. On the basis of ferroelectrics, devices such as varicades, delay lines, phase shifters, etc. are being actively developed. Ferromagnets (primarily ferrites) serve as the basis for directional couplers, circulators, valves, filters, phased antenna arrays, etc. Today, the most common method of creating functional composites, combining dielectric and magnetic properties, is the introduction of classical ferroelectrics, such as triglycine sulfate, Siegnette salt (KNaC4H4O6∙4H2O), sodium nitrite, etc. in iron-containing matrices. The relevance of this approach is due to the fact that when a ferroelectric is introduced into the FM matrix, it becomes possible to create composite multiferroic materials with two types of ordering (electric and magnetic). In this paper, we study the possibilities of creating glass-ceramic multiferroic materials based on Siegnette salt and barium titanate, introduced in the pore space of ferromagnetic glass, formed by ion exchange between alkaline glass cations and salt melt. For obtaining porous glass-ceramic materials by the method of ion exchange, potassium iron-containing silicate glasses are used in the work. 15K2O·20Fe2O3·55SiO2, mol. % (KFeSi).</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.822.856</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1013-9826 |
ispartof | Key engineering materials, 2019-09, Vol.822, p.856-863 |
issn | 1013-9826 1662-9795 1662-9795 |
language | eng |
recordid | cdi_proquest_journals_2298391246 |
source | Scientific.net Journals |
subjects | Antenna arrays Barium titanates Delay lines Dielectric properties Dielectric strength Directional couplers Electric filters Electromagnetic fields Ferroelectric materials Ferroelectricity Ferroelectrics Ferromagnetic materials Glass ceramics Ion exchange Iron Magnetic permeability Magnetic properties Multiferroic materials Phase shifters Porous materials Sodium nitrite Triglycine sulfate |
title | Formation of New Glass-Ceramic Materials with Controllable Dielectric and Magnetic Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20of%20New%20Glass-Ceramic%20Materials%20with%20Controllable%20Dielectric%20and%20Magnetic%20Properties&rft.jtitle=Key%20engineering%20materials&rft.au=Sinelshchikova,%20Olga%20Yu&rft.date=2019-09-01&rft.volume=822&rft.spage=856&rft.epage=863&rft.pages=856-863&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.822.856&rft_dat=%3Cproquest_cross%3E2298391246%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298391246&rft_id=info:pmid/&rfr_iscdi=true |