Modeling Perceptual Aliasing in SLAM via Discrete-Continuous Graphical Models

Perceptual aliasing is one of the main causes of the failure for simultaneous localization and mapping (SLAM) systems operating in the wild. Perceptual aliasing is a phenomenon where different places generate a similar visual (or, in general, perceptual) footprint. This causes spurious measurements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2019-04, Vol.4 (2), p.1232-1239
Hauptverfasser: Lajoie, Pierre-Yves, Hu, Siyi, Beltrame, Giovanni, Carlone, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1239
container_issue 2
container_start_page 1232
container_title IEEE robotics and automation letters
container_volume 4
creator Lajoie, Pierre-Yves
Hu, Siyi
Beltrame, Giovanni
Carlone, Luca
description Perceptual aliasing is one of the main causes of the failure for simultaneous localization and mapping (SLAM) systems operating in the wild. Perceptual aliasing is a phenomenon where different places generate a similar visual (or, in general, perceptual) footprint. This causes spurious measurements to be fed to the SLAM estimator, which typically results in incorrect localization and mapping results. This problem is exacerbated by the fact that those outliers are highly correlated , in the sense that perceptual aliasing creates a large number of mutually consistent outliers. Another issue stems from the fact that most state-of-the-art techniques rely on a given trajectory guess (e.g., from odometry) to discern between inliers and outliers, and this makes the resulting pipeline brittle, since the accumulation of error may result in incorrect choices and recovery from failures is far from trivial. This paper provides a unified framework to model perceptual aliasing in SLAM and provides practical algorithms that can cope with outliers without relying on any initial guess. We present two main contributions. The first is a discrete-continuous graphical model ( DC-GM ) for SLAM: The continuous portion of the DC-GM captures the standard SLAM problem, while the discrete portion describes the selection of the outliers and models their correlation. The second contribution is a semidefinite relaxation to perform inference in the DC-GM that returns estimates with provable sub-optimality guarantees. Experimental results on standard benchmarking datasets show that the proposed technique compares favorably with state-of-the-art methods while not relying on an initial guess for optimization.
doi_str_mv 10.1109/LRA.2019.2894852
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2298388397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8624393</ieee_id><sourcerecordid>2298388397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-da57b96a3cba8aa96f80b7a69414a099e8da1591304761e2edb4bf9949d1bbc73</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouKx7F7wUPHfNR5tkjmXVVeii-HEOaZpqltrWpBX897Z2EU8zDM_7DjwInRO8JgTDVf6UrSkmsKYSEpnSI7SgTIiYCc6P_-2naBXCHmNMUioYpAu027WlrV3zFj1ab2zXD7qOstrpMN1cEz3n2S76cjq6dsF429t40za9a4Z2CNHW6-7dmTHyWxPO0Eml62BXh7lEr7c3L5u7OH_Y3m-yPDYsFX1c6lQUwDUzhZZaA68kLoTmkJBEYwArS01SIAwnghNLbVkkRQWQQEmKwgi2RJdzb-fbz8GGXu3bwTfjS0UpSCYlg4nCM2V8G4K3leq8-9D-WxGsJm9q9KYmb-rgbYxczBFnrf3DJacJA8Z-AIwhaGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298388397</pqid></control><display><type>article</type><title>Modeling Perceptual Aliasing in SLAM via Discrete-Continuous Graphical Models</title><source>IEEE Electronic Library (IEL)</source><creator>Lajoie, Pierre-Yves ; Hu, Siyi ; Beltrame, Giovanni ; Carlone, Luca</creator><creatorcontrib>Lajoie, Pierre-Yves ; Hu, Siyi ; Beltrame, Giovanni ; Carlone, Luca</creatorcontrib><description>Perceptual aliasing is one of the main causes of the failure for simultaneous localization and mapping (SLAM) systems operating in the wild. Perceptual aliasing is a phenomenon where different places generate a similar visual (or, in general, perceptual) footprint. This causes spurious measurements to be fed to the SLAM estimator, which typically results in incorrect localization and mapping results. This problem is exacerbated by the fact that those outliers are highly correlated , in the sense that perceptual aliasing creates a large number of mutually consistent outliers. Another issue stems from the fact that most state-of-the-art techniques rely on a given trajectory guess (e.g., from odometry) to discern between inliers and outliers, and this makes the resulting pipeline brittle, since the accumulation of error may result in incorrect choices and recovery from failures is far from trivial. This paper provides a unified framework to model perceptual aliasing in SLAM and provides practical algorithms that can cope with outliers without relying on any initial guess. We present two main contributions. The first is a discrete-continuous graphical model ( DC-GM ) for SLAM: The continuous portion of the DC-GM captures the standard SLAM problem, while the discrete portion describes the selection of the outliers and models their correlation. The second contribution is a semidefinite relaxation to perform inference in the DC-GM that returns estimates with provable sub-optimality guarantees. Experimental results on standard benchmarking datasets show that the proposed technique compares favorably with state-of-the-art methods while not relying on an initial guess for optimization.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2019.2894852</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Aliasing ; Computational modeling ; Correlation ; Graphical models ; Inliers (landforms) ; Localization ; mapping ; Noise measurement ; Odometers ; Optimization ; optimization and optimal Control ; Outliers (statistics) ; sensor fusion ; Simultaneous localization and mapping ; SLAM</subject><ispartof>IEEE robotics and automation letters, 2019-04, Vol.4 (2), p.1232-1239</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-da57b96a3cba8aa96f80b7a69414a099e8da1591304761e2edb4bf9949d1bbc73</citedby><cites>FETCH-LOGICAL-c357t-da57b96a3cba8aa96f80b7a69414a099e8da1591304761e2edb4bf9949d1bbc73</cites><orcidid>0000-0002-7495-8567 ; 0000-0002-8970-3962 ; 0000-0003-1884-5397 ; 0000-0001-9755-8630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8624393$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8624393$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lajoie, Pierre-Yves</creatorcontrib><creatorcontrib>Hu, Siyi</creatorcontrib><creatorcontrib>Beltrame, Giovanni</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><title>Modeling Perceptual Aliasing in SLAM via Discrete-Continuous Graphical Models</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Perceptual aliasing is one of the main causes of the failure for simultaneous localization and mapping (SLAM) systems operating in the wild. Perceptual aliasing is a phenomenon where different places generate a similar visual (or, in general, perceptual) footprint. This causes spurious measurements to be fed to the SLAM estimator, which typically results in incorrect localization and mapping results. This problem is exacerbated by the fact that those outliers are highly correlated , in the sense that perceptual aliasing creates a large number of mutually consistent outliers. Another issue stems from the fact that most state-of-the-art techniques rely on a given trajectory guess (e.g., from odometry) to discern between inliers and outliers, and this makes the resulting pipeline brittle, since the accumulation of error may result in incorrect choices and recovery from failures is far from trivial. This paper provides a unified framework to model perceptual aliasing in SLAM and provides practical algorithms that can cope with outliers without relying on any initial guess. We present two main contributions. The first is a discrete-continuous graphical model ( DC-GM ) for SLAM: The continuous portion of the DC-GM captures the standard SLAM problem, while the discrete portion describes the selection of the outliers and models their correlation. The second contribution is a semidefinite relaxation to perform inference in the DC-GM that returns estimates with provable sub-optimality guarantees. Experimental results on standard benchmarking datasets show that the proposed technique compares favorably with state-of-the-art methods while not relying on an initial guess for optimization.</description><subject>Algorithms</subject><subject>Aliasing</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Graphical models</subject><subject>Inliers (landforms)</subject><subject>Localization</subject><subject>mapping</subject><subject>Noise measurement</subject><subject>Odometers</subject><subject>Optimization</subject><subject>optimization and optimal Control</subject><subject>Outliers (statistics)</subject><subject>sensor fusion</subject><subject>Simultaneous localization and mapping</subject><subject>SLAM</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LxDAQhoMouKx7F7wUPHfNR5tkjmXVVeii-HEOaZpqltrWpBX897Z2EU8zDM_7DjwInRO8JgTDVf6UrSkmsKYSEpnSI7SgTIiYCc6P_-2naBXCHmNMUioYpAu027WlrV3zFj1ab2zXD7qOstrpMN1cEz3n2S76cjq6dsF429t40za9a4Z2CNHW6-7dmTHyWxPO0Eml62BXh7lEr7c3L5u7OH_Y3m-yPDYsFX1c6lQUwDUzhZZaA68kLoTmkJBEYwArS01SIAwnghNLbVkkRQWQQEmKwgi2RJdzb-fbz8GGXu3bwTfjS0UpSCYlg4nCM2V8G4K3leq8-9D-WxGsJm9q9KYmb-rgbYxczBFnrf3DJacJA8Z-AIwhaGc</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Lajoie, Pierre-Yves</creator><creator>Hu, Siyi</creator><creator>Beltrame, Giovanni</creator><creator>Carlone, Luca</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7495-8567</orcidid><orcidid>https://orcid.org/0000-0002-8970-3962</orcidid><orcidid>https://orcid.org/0000-0003-1884-5397</orcidid><orcidid>https://orcid.org/0000-0001-9755-8630</orcidid></search><sort><creationdate>20190401</creationdate><title>Modeling Perceptual Aliasing in SLAM via Discrete-Continuous Graphical Models</title><author>Lajoie, Pierre-Yves ; Hu, Siyi ; Beltrame, Giovanni ; Carlone, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-da57b96a3cba8aa96f80b7a69414a099e8da1591304761e2edb4bf9949d1bbc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Aliasing</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Graphical models</topic><topic>Inliers (landforms)</topic><topic>Localization</topic><topic>mapping</topic><topic>Noise measurement</topic><topic>Odometers</topic><topic>Optimization</topic><topic>optimization and optimal Control</topic><topic>Outliers (statistics)</topic><topic>sensor fusion</topic><topic>Simultaneous localization and mapping</topic><topic>SLAM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lajoie, Pierre-Yves</creatorcontrib><creatorcontrib>Hu, Siyi</creatorcontrib><creatorcontrib>Beltrame, Giovanni</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lajoie, Pierre-Yves</au><au>Hu, Siyi</au><au>Beltrame, Giovanni</au><au>Carlone, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Perceptual Aliasing in SLAM via Discrete-Continuous Graphical Models</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>4</volume><issue>2</issue><spage>1232</spage><epage>1239</epage><pages>1232-1239</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Perceptual aliasing is one of the main causes of the failure for simultaneous localization and mapping (SLAM) systems operating in the wild. Perceptual aliasing is a phenomenon where different places generate a similar visual (or, in general, perceptual) footprint. This causes spurious measurements to be fed to the SLAM estimator, which typically results in incorrect localization and mapping results. This problem is exacerbated by the fact that those outliers are highly correlated , in the sense that perceptual aliasing creates a large number of mutually consistent outliers. Another issue stems from the fact that most state-of-the-art techniques rely on a given trajectory guess (e.g., from odometry) to discern between inliers and outliers, and this makes the resulting pipeline brittle, since the accumulation of error may result in incorrect choices and recovery from failures is far from trivial. This paper provides a unified framework to model perceptual aliasing in SLAM and provides practical algorithms that can cope with outliers without relying on any initial guess. We present two main contributions. The first is a discrete-continuous graphical model ( DC-GM ) for SLAM: The continuous portion of the DC-GM captures the standard SLAM problem, while the discrete portion describes the selection of the outliers and models their correlation. The second contribution is a semidefinite relaxation to perform inference in the DC-GM that returns estimates with provable sub-optimality guarantees. Experimental results on standard benchmarking datasets show that the proposed technique compares favorably with state-of-the-art methods while not relying on an initial guess for optimization.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2019.2894852</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7495-8567</orcidid><orcidid>https://orcid.org/0000-0002-8970-3962</orcidid><orcidid>https://orcid.org/0000-0003-1884-5397</orcidid><orcidid>https://orcid.org/0000-0001-9755-8630</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2019-04, Vol.4 (2), p.1232-1239
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2298388397
source IEEE Electronic Library (IEL)
subjects Algorithms
Aliasing
Computational modeling
Correlation
Graphical models
Inliers (landforms)
Localization
mapping
Noise measurement
Odometers
Optimization
optimization and optimal Control
Outliers (statistics)
sensor fusion
Simultaneous localization and mapping
SLAM
title Modeling Perceptual Aliasing in SLAM via Discrete-Continuous Graphical Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Perceptual%20Aliasing%20in%20SLAM%20via%20Discrete-Continuous%20Graphical%20Models&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Lajoie,%20Pierre-Yves&rft.date=2019-04-01&rft.volume=4&rft.issue=2&rft.spage=1232&rft.epage=1239&rft.pages=1232-1239&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2019.2894852&rft_dat=%3Cproquest_RIE%3E2298388397%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298388397&rft_id=info:pmid/&rft_ieee_id=8624393&rfr_iscdi=true