Modeling Perceptual Aliasing in SLAM via Discrete-Continuous Graphical Models
Perceptual aliasing is one of the main causes of the failure for simultaneous localization and mapping (SLAM) systems operating in the wild. Perceptual aliasing is a phenomenon where different places generate a similar visual (or, in general, perceptual) footprint. This causes spurious measurements...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2019-04, Vol.4 (2), p.1232-1239 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1239 |
---|---|
container_issue | 2 |
container_start_page | 1232 |
container_title | IEEE robotics and automation letters |
container_volume | 4 |
creator | Lajoie, Pierre-Yves Hu, Siyi Beltrame, Giovanni Carlone, Luca |
description | Perceptual aliasing is one of the main causes of the failure for simultaneous localization and mapping (SLAM) systems operating in the wild. Perceptual aliasing is a phenomenon where different places generate a similar visual (or, in general, perceptual) footprint. This causes spurious measurements to be fed to the SLAM estimator, which typically results in incorrect localization and mapping results. This problem is exacerbated by the fact that those outliers are highly correlated , in the sense that perceptual aliasing creates a large number of mutually consistent outliers. Another issue stems from the fact that most state-of-the-art techniques rely on a given trajectory guess (e.g., from odometry) to discern between inliers and outliers, and this makes the resulting pipeline brittle, since the accumulation of error may result in incorrect choices and recovery from failures is far from trivial. This paper provides a unified framework to model perceptual aliasing in SLAM and provides practical algorithms that can cope with outliers without relying on any initial guess. We present two main contributions. The first is a discrete-continuous graphical model ( DC-GM ) for SLAM: The continuous portion of the DC-GM captures the standard SLAM problem, while the discrete portion describes the selection of the outliers and models their correlation. The second contribution is a semidefinite relaxation to perform inference in the DC-GM that returns estimates with provable sub-optimality guarantees. Experimental results on standard benchmarking datasets show that the proposed technique compares favorably with state-of-the-art methods while not relying on an initial guess for optimization. |
doi_str_mv | 10.1109/LRA.2019.2894852 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2298388397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8624393</ieee_id><sourcerecordid>2298388397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-da57b96a3cba8aa96f80b7a69414a099e8da1591304761e2edb4bf9949d1bbc73</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhoMouKx7F7wUPHfNR5tkjmXVVeii-HEOaZpqltrWpBX897Z2EU8zDM_7DjwInRO8JgTDVf6UrSkmsKYSEpnSI7SgTIiYCc6P_-2naBXCHmNMUioYpAu027WlrV3zFj1ab2zXD7qOstrpMN1cEz3n2S76cjq6dsF429t40za9a4Z2CNHW6-7dmTHyWxPO0Eml62BXh7lEr7c3L5u7OH_Y3m-yPDYsFX1c6lQUwDUzhZZaA68kLoTmkJBEYwArS01SIAwnghNLbVkkRQWQQEmKwgi2RJdzb-fbz8GGXu3bwTfjS0UpSCYlg4nCM2V8G4K3leq8-9D-WxGsJm9q9KYmb-rgbYxczBFnrf3DJacJA8Z-AIwhaGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298388397</pqid></control><display><type>article</type><title>Modeling Perceptual Aliasing in SLAM via Discrete-Continuous Graphical Models</title><source>IEEE Electronic Library (IEL)</source><creator>Lajoie, Pierre-Yves ; Hu, Siyi ; Beltrame, Giovanni ; Carlone, Luca</creator><creatorcontrib>Lajoie, Pierre-Yves ; Hu, Siyi ; Beltrame, Giovanni ; Carlone, Luca</creatorcontrib><description>Perceptual aliasing is one of the main causes of the failure for simultaneous localization and mapping (SLAM) systems operating in the wild. Perceptual aliasing is a phenomenon where different places generate a similar visual (or, in general, perceptual) footprint. This causes spurious measurements to be fed to the SLAM estimator, which typically results in incorrect localization and mapping results. This problem is exacerbated by the fact that those outliers are highly correlated , in the sense that perceptual aliasing creates a large number of mutually consistent outliers. Another issue stems from the fact that most state-of-the-art techniques rely on a given trajectory guess (e.g., from odometry) to discern between inliers and outliers, and this makes the resulting pipeline brittle, since the accumulation of error may result in incorrect choices and recovery from failures is far from trivial. This paper provides a unified framework to model perceptual aliasing in SLAM and provides practical algorithms that can cope with outliers without relying on any initial guess. We present two main contributions. The first is a discrete-continuous graphical model ( DC-GM ) for SLAM: The continuous portion of the DC-GM captures the standard SLAM problem, while the discrete portion describes the selection of the outliers and models their correlation. The second contribution is a semidefinite relaxation to perform inference in the DC-GM that returns estimates with provable sub-optimality guarantees. Experimental results on standard benchmarking datasets show that the proposed technique compares favorably with state-of-the-art methods while not relying on an initial guess for optimization.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2019.2894852</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Aliasing ; Computational modeling ; Correlation ; Graphical models ; Inliers (landforms) ; Localization ; mapping ; Noise measurement ; Odometers ; Optimization ; optimization and optimal Control ; Outliers (statistics) ; sensor fusion ; Simultaneous localization and mapping ; SLAM</subject><ispartof>IEEE robotics and automation letters, 2019-04, Vol.4 (2), p.1232-1239</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-da57b96a3cba8aa96f80b7a69414a099e8da1591304761e2edb4bf9949d1bbc73</citedby><cites>FETCH-LOGICAL-c357t-da57b96a3cba8aa96f80b7a69414a099e8da1591304761e2edb4bf9949d1bbc73</cites><orcidid>0000-0002-7495-8567 ; 0000-0002-8970-3962 ; 0000-0003-1884-5397 ; 0000-0001-9755-8630</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8624393$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8624393$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lajoie, Pierre-Yves</creatorcontrib><creatorcontrib>Hu, Siyi</creatorcontrib><creatorcontrib>Beltrame, Giovanni</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><title>Modeling Perceptual Aliasing in SLAM via Discrete-Continuous Graphical Models</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Perceptual aliasing is one of the main causes of the failure for simultaneous localization and mapping (SLAM) systems operating in the wild. Perceptual aliasing is a phenomenon where different places generate a similar visual (or, in general, perceptual) footprint. This causes spurious measurements to be fed to the SLAM estimator, which typically results in incorrect localization and mapping results. This problem is exacerbated by the fact that those outliers are highly correlated , in the sense that perceptual aliasing creates a large number of mutually consistent outliers. Another issue stems from the fact that most state-of-the-art techniques rely on a given trajectory guess (e.g., from odometry) to discern between inliers and outliers, and this makes the resulting pipeline brittle, since the accumulation of error may result in incorrect choices and recovery from failures is far from trivial. This paper provides a unified framework to model perceptual aliasing in SLAM and provides practical algorithms that can cope with outliers without relying on any initial guess. We present two main contributions. The first is a discrete-continuous graphical model ( DC-GM ) for SLAM: The continuous portion of the DC-GM captures the standard SLAM problem, while the discrete portion describes the selection of the outliers and models their correlation. The second contribution is a semidefinite relaxation to perform inference in the DC-GM that returns estimates with provable sub-optimality guarantees. Experimental results on standard benchmarking datasets show that the proposed technique compares favorably with state-of-the-art methods while not relying on an initial guess for optimization.</description><subject>Algorithms</subject><subject>Aliasing</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Graphical models</subject><subject>Inliers (landforms)</subject><subject>Localization</subject><subject>mapping</subject><subject>Noise measurement</subject><subject>Odometers</subject><subject>Optimization</subject><subject>optimization and optimal Control</subject><subject>Outliers (statistics)</subject><subject>sensor fusion</subject><subject>Simultaneous localization and mapping</subject><subject>SLAM</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LxDAQhoMouKx7F7wUPHfNR5tkjmXVVeii-HEOaZpqltrWpBX897Z2EU8zDM_7DjwInRO8JgTDVf6UrSkmsKYSEpnSI7SgTIiYCc6P_-2naBXCHmNMUioYpAu027WlrV3zFj1ab2zXD7qOstrpMN1cEz3n2S76cjq6dsF429t40za9a4Z2CNHW6-7dmTHyWxPO0Eml62BXh7lEr7c3L5u7OH_Y3m-yPDYsFX1c6lQUwDUzhZZaA68kLoTmkJBEYwArS01SIAwnghNLbVkkRQWQQEmKwgi2RJdzb-fbz8GGXu3bwTfjS0UpSCYlg4nCM2V8G4K3leq8-9D-WxGsJm9q9KYmb-rgbYxczBFnrf3DJacJA8Z-AIwhaGc</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Lajoie, Pierre-Yves</creator><creator>Hu, Siyi</creator><creator>Beltrame, Giovanni</creator><creator>Carlone, Luca</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7495-8567</orcidid><orcidid>https://orcid.org/0000-0002-8970-3962</orcidid><orcidid>https://orcid.org/0000-0003-1884-5397</orcidid><orcidid>https://orcid.org/0000-0001-9755-8630</orcidid></search><sort><creationdate>20190401</creationdate><title>Modeling Perceptual Aliasing in SLAM via Discrete-Continuous Graphical Models</title><author>Lajoie, Pierre-Yves ; Hu, Siyi ; Beltrame, Giovanni ; Carlone, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-da57b96a3cba8aa96f80b7a69414a099e8da1591304761e2edb4bf9949d1bbc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Aliasing</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Graphical models</topic><topic>Inliers (landforms)</topic><topic>Localization</topic><topic>mapping</topic><topic>Noise measurement</topic><topic>Odometers</topic><topic>Optimization</topic><topic>optimization and optimal Control</topic><topic>Outliers (statistics)</topic><topic>sensor fusion</topic><topic>Simultaneous localization and mapping</topic><topic>SLAM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lajoie, Pierre-Yves</creatorcontrib><creatorcontrib>Hu, Siyi</creatorcontrib><creatorcontrib>Beltrame, Giovanni</creatorcontrib><creatorcontrib>Carlone, Luca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lajoie, Pierre-Yves</au><au>Hu, Siyi</au><au>Beltrame, Giovanni</au><au>Carlone, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Perceptual Aliasing in SLAM via Discrete-Continuous Graphical Models</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>4</volume><issue>2</issue><spage>1232</spage><epage>1239</epage><pages>1232-1239</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Perceptual aliasing is one of the main causes of the failure for simultaneous localization and mapping (SLAM) systems operating in the wild. Perceptual aliasing is a phenomenon where different places generate a similar visual (or, in general, perceptual) footprint. This causes spurious measurements to be fed to the SLAM estimator, which typically results in incorrect localization and mapping results. This problem is exacerbated by the fact that those outliers are highly correlated , in the sense that perceptual aliasing creates a large number of mutually consistent outliers. Another issue stems from the fact that most state-of-the-art techniques rely on a given trajectory guess (e.g., from odometry) to discern between inliers and outliers, and this makes the resulting pipeline brittle, since the accumulation of error may result in incorrect choices and recovery from failures is far from trivial. This paper provides a unified framework to model perceptual aliasing in SLAM and provides practical algorithms that can cope with outliers without relying on any initial guess. We present two main contributions. The first is a discrete-continuous graphical model ( DC-GM ) for SLAM: The continuous portion of the DC-GM captures the standard SLAM problem, while the discrete portion describes the selection of the outliers and models their correlation. The second contribution is a semidefinite relaxation to perform inference in the DC-GM that returns estimates with provable sub-optimality guarantees. Experimental results on standard benchmarking datasets show that the proposed technique compares favorably with state-of-the-art methods while not relying on an initial guess for optimization.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2019.2894852</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7495-8567</orcidid><orcidid>https://orcid.org/0000-0002-8970-3962</orcidid><orcidid>https://orcid.org/0000-0003-1884-5397</orcidid><orcidid>https://orcid.org/0000-0001-9755-8630</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2019-04, Vol.4 (2), p.1232-1239 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2298388397 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Aliasing Computational modeling Correlation Graphical models Inliers (landforms) Localization mapping Noise measurement Odometers Optimization optimization and optimal Control Outliers (statistics) sensor fusion Simultaneous localization and mapping SLAM |
title | Modeling Perceptual Aliasing in SLAM via Discrete-Continuous Graphical Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T05%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Perceptual%20Aliasing%20in%20SLAM%20via%20Discrete-Continuous%20Graphical%20Models&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Lajoie,%20Pierre-Yves&rft.date=2019-04-01&rft.volume=4&rft.issue=2&rft.spage=1232&rft.epage=1239&rft.pages=1232-1239&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2019.2894852&rft_dat=%3Cproquest_RIE%3E2298388397%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298388397&rft_id=info:pmid/&rft_ieee_id=8624393&rfr_iscdi=true |