The Foldable Drone: A Morphing Quadrotor That Can Squeeze and Fly
The recent advances in state estimation, perception, and navigation algorithms have significantly contributed to the ubiquitous use of quadrotors for inspection, mapping, and aerial imaging. To further increase the versatility of quadrotors, recent works investigated the use of an adaptive morpholog...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2019-04, Vol.4 (2), p.209-216 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 216 |
---|---|
container_issue | 2 |
container_start_page | 209 |
container_title | IEEE robotics and automation letters |
container_volume | 4 |
creator | Falanga, Davide Kleber, Kevin Mintchev, Stefano Floreano, Dario Scaramuzza, Davide |
description | The recent advances in state estimation, perception, and navigation algorithms have significantly contributed to the ubiquitous use of quadrotors for inspection, mapping, and aerial imaging. To further increase the versatility of quadrotors, recent works investigated the use of an adaptive morphology, which consists of modifying the shape of the vehicle during flight to suit a specific task or environment. However, these works either increase the complexity of the platform or decrease its controllability. In this letter, we propose a novel, simpler, yet effective morphing design for quadrotors consisting of a frame with four independently rotating arms that fold around the main frame. To guarantee stable flight at all times, we exploit an optimal control strategy that adapts on the fly to the drone morphology. We demonstrate the versatility of the proposed adaptive morphology in different tasks, such as negotiation of narrow gaps, close inspection of vertical surfaces, and object grasping and transportation. The experiments are performed on an actual, fully autonomous quadrotor relying solely on onboard visual-inertial sensors and compute. No external motion tracking systems and computers are used. This is the first work showing stable flight without requiring any symmetry of the morphology. |
doi_str_mv | 10.1109/LRA.2018.2885575 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2298374099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8567932</ieee_id><sourcerecordid>2298374099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-16dc16bfde07b403994bbea99a6f63cbd7be527d4fafbc11ed45c738e45445c63</originalsourceid><addsrcrecordid>eNpNkM1LAzEUxIMoWGrvgpeA56352CQbb0u1KlREreeQbN7alnVTs7uH-teb0iKe3hxm5g0_hC4pmVJK9M3irZwyQospKwohlDhBI8aVyriS8vSfPkeTrtsQQqhgimsxQuVyBXgeGm9dA_guhhZucYmfQ9yu1u0nfh2sj6EPES9Xtscz2-L37wHgB7BtPZ43uwt0Vtumg8nxjtHH_H45e8wWLw9Ps3KRVZzzPqPSV1S62gNRLidc69w5sFpbWUteOa8cpFE-r23tKkrB56JSvIBc5ElJPkbXh95tDGlB15tNGGKbXhrGdMFVTrROLnJwVTF0XYTabOP6y8adocTsWZnEyuxZmSOrFLk6RNYA8GcvhFSaM_4LMERjgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298374099</pqid></control><display><type>article</type><title>The Foldable Drone: A Morphing Quadrotor That Can Squeeze and Fly</title><source>IEEE Electronic Library (IEL)</source><creator>Falanga, Davide ; Kleber, Kevin ; Mintchev, Stefano ; Floreano, Dario ; Scaramuzza, Davide</creator><creatorcontrib>Falanga, Davide ; Kleber, Kevin ; Mintchev, Stefano ; Floreano, Dario ; Scaramuzza, Davide</creatorcontrib><description>The recent advances in state estimation, perception, and navigation algorithms have significantly contributed to the ubiquitous use of quadrotors for inspection, mapping, and aerial imaging. To further increase the versatility of quadrotors, recent works investigated the use of an adaptive morphology, which consists of modifying the shape of the vehicle during flight to suit a specific task or environment. However, these works either increase the complexity of the platform or decrease its controllability. In this letter, we propose a novel, simpler, yet effective morphing design for quadrotors consisting of a frame with four independently rotating arms that fold around the main frame. To guarantee stable flight at all times, we exploit an optimal control strategy that adapts on the fly to the drone morphology. We demonstrate the versatility of the proposed adaptive morphology in different tasks, such as negotiation of narrow gaps, close inspection of vertical surfaces, and object grasping and transportation. The experiments are performed on an actual, fully autonomous quadrotor relying solely on onboard visual-inertial sensors and compute. No external motion tracking systems and computers are used. This is the first work showing stable flight without requiring any symmetry of the morphology.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2018.2885575</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aerial systems: Applications ; aerial systems: mechanics and control ; Algorithms ; Controllability ; Drones ; Inertial sensing devices ; Inspection ; Mapping ; Morphing ; Morphology ; motion control ; Optimal control ; Propellers ; Robots ; robust/adaptive control of robotic systems ; Rotary wing aircraft ; Shape ; Stability ; State estimation ; Task analysis ; Tracking systems ; Versatility</subject><ispartof>IEEE robotics and automation letters, 2019-04, Vol.4 (2), p.209-216</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-16dc16bfde07b403994bbea99a6f63cbd7be527d4fafbc11ed45c738e45445c63</citedby><cites>FETCH-LOGICAL-c333t-16dc16bfde07b403994bbea99a6f63cbd7be527d4fafbc11ed45c738e45445c63</cites><orcidid>0000-0001-6272-0212 ; 0000-0002-7878-4621 ; 0000-0002-5330-4863 ; 0000-0002-3831-6778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8567932$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8567932$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Falanga, Davide</creatorcontrib><creatorcontrib>Kleber, Kevin</creatorcontrib><creatorcontrib>Mintchev, Stefano</creatorcontrib><creatorcontrib>Floreano, Dario</creatorcontrib><creatorcontrib>Scaramuzza, Davide</creatorcontrib><title>The Foldable Drone: A Morphing Quadrotor That Can Squeeze and Fly</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>The recent advances in state estimation, perception, and navigation algorithms have significantly contributed to the ubiquitous use of quadrotors for inspection, mapping, and aerial imaging. To further increase the versatility of quadrotors, recent works investigated the use of an adaptive morphology, which consists of modifying the shape of the vehicle during flight to suit a specific task or environment. However, these works either increase the complexity of the platform or decrease its controllability. In this letter, we propose a novel, simpler, yet effective morphing design for quadrotors consisting of a frame with four independently rotating arms that fold around the main frame. To guarantee stable flight at all times, we exploit an optimal control strategy that adapts on the fly to the drone morphology. We demonstrate the versatility of the proposed adaptive morphology in different tasks, such as negotiation of narrow gaps, close inspection of vertical surfaces, and object grasping and transportation. The experiments are performed on an actual, fully autonomous quadrotor relying solely on onboard visual-inertial sensors and compute. No external motion tracking systems and computers are used. This is the first work showing stable flight without requiring any symmetry of the morphology.</description><subject>Aerial systems: Applications</subject><subject>aerial systems: mechanics and control</subject><subject>Algorithms</subject><subject>Controllability</subject><subject>Drones</subject><subject>Inertial sensing devices</subject><subject>Inspection</subject><subject>Mapping</subject><subject>Morphing</subject><subject>Morphology</subject><subject>motion control</subject><subject>Optimal control</subject><subject>Propellers</subject><subject>Robots</subject><subject>robust/adaptive control of robotic systems</subject><subject>Rotary wing aircraft</subject><subject>Shape</subject><subject>Stability</subject><subject>State estimation</subject><subject>Task analysis</subject><subject>Tracking systems</subject><subject>Versatility</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEUxIMoWGrvgpeA56352CQbb0u1KlREreeQbN7alnVTs7uH-teb0iKe3hxm5g0_hC4pmVJK9M3irZwyQospKwohlDhBI8aVyriS8vSfPkeTrtsQQqhgimsxQuVyBXgeGm9dA_guhhZucYmfQ9yu1u0nfh2sj6EPES9Xtscz2-L37wHgB7BtPZ43uwt0Vtumg8nxjtHH_H45e8wWLw9Ps3KRVZzzPqPSV1S62gNRLidc69w5sFpbWUteOa8cpFE-r23tKkrB56JSvIBc5ElJPkbXh95tDGlB15tNGGKbXhrGdMFVTrROLnJwVTF0XYTabOP6y8adocTsWZnEyuxZmSOrFLk6RNYA8GcvhFSaM_4LMERjgA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Falanga, Davide</creator><creator>Kleber, Kevin</creator><creator>Mintchev, Stefano</creator><creator>Floreano, Dario</creator><creator>Scaramuzza, Davide</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6272-0212</orcidid><orcidid>https://orcid.org/0000-0002-7878-4621</orcidid><orcidid>https://orcid.org/0000-0002-5330-4863</orcidid><orcidid>https://orcid.org/0000-0002-3831-6778</orcidid></search><sort><creationdate>20190401</creationdate><title>The Foldable Drone: A Morphing Quadrotor That Can Squeeze and Fly</title><author>Falanga, Davide ; Kleber, Kevin ; Mintchev, Stefano ; Floreano, Dario ; Scaramuzza, Davide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-16dc16bfde07b403994bbea99a6f63cbd7be527d4fafbc11ed45c738e45445c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerial systems: Applications</topic><topic>aerial systems: mechanics and control</topic><topic>Algorithms</topic><topic>Controllability</topic><topic>Drones</topic><topic>Inertial sensing devices</topic><topic>Inspection</topic><topic>Mapping</topic><topic>Morphing</topic><topic>Morphology</topic><topic>motion control</topic><topic>Optimal control</topic><topic>Propellers</topic><topic>Robots</topic><topic>robust/adaptive control of robotic systems</topic><topic>Rotary wing aircraft</topic><topic>Shape</topic><topic>Stability</topic><topic>State estimation</topic><topic>Task analysis</topic><topic>Tracking systems</topic><topic>Versatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falanga, Davide</creatorcontrib><creatorcontrib>Kleber, Kevin</creatorcontrib><creatorcontrib>Mintchev, Stefano</creatorcontrib><creatorcontrib>Floreano, Dario</creatorcontrib><creatorcontrib>Scaramuzza, Davide</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Falanga, Davide</au><au>Kleber, Kevin</au><au>Mintchev, Stefano</au><au>Floreano, Dario</au><au>Scaramuzza, Davide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Foldable Drone: A Morphing Quadrotor That Can Squeeze and Fly</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>4</volume><issue>2</issue><spage>209</spage><epage>216</epage><pages>209-216</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>The recent advances in state estimation, perception, and navigation algorithms have significantly contributed to the ubiquitous use of quadrotors for inspection, mapping, and aerial imaging. To further increase the versatility of quadrotors, recent works investigated the use of an adaptive morphology, which consists of modifying the shape of the vehicle during flight to suit a specific task or environment. However, these works either increase the complexity of the platform or decrease its controllability. In this letter, we propose a novel, simpler, yet effective morphing design for quadrotors consisting of a frame with four independently rotating arms that fold around the main frame. To guarantee stable flight at all times, we exploit an optimal control strategy that adapts on the fly to the drone morphology. We demonstrate the versatility of the proposed adaptive morphology in different tasks, such as negotiation of narrow gaps, close inspection of vertical surfaces, and object grasping and transportation. The experiments are performed on an actual, fully autonomous quadrotor relying solely on onboard visual-inertial sensors and compute. No external motion tracking systems and computers are used. This is the first work showing stable flight without requiring any symmetry of the morphology.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2018.2885575</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6272-0212</orcidid><orcidid>https://orcid.org/0000-0002-7878-4621</orcidid><orcidid>https://orcid.org/0000-0002-5330-4863</orcidid><orcidid>https://orcid.org/0000-0002-3831-6778</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2019-04, Vol.4 (2), p.209-216 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2298374099 |
source | IEEE Electronic Library (IEL) |
subjects | Aerial systems: Applications aerial systems: mechanics and control Algorithms Controllability Drones Inertial sensing devices Inspection Mapping Morphing Morphology motion control Optimal control Propellers Robots robust/adaptive control of robotic systems Rotary wing aircraft Shape Stability State estimation Task analysis Tracking systems Versatility |
title | The Foldable Drone: A Morphing Quadrotor That Can Squeeze and Fly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Foldable%20Drone:%20A%20Morphing%20Quadrotor%20That%20Can%20Squeeze%20and%20Fly&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Falanga,%20Davide&rft.date=2019-04-01&rft.volume=4&rft.issue=2&rft.spage=209&rft.epage=216&rft.pages=209-216&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2018.2885575&rft_dat=%3Cproquest_RIE%3E2298374099%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298374099&rft_id=info:pmid/&rft_ieee_id=8567932&rfr_iscdi=true |