PORCA: Modeling and Planning for Autonomous Driving Among Many Pedestrians

This letter presents a planning system for autonomous driving among many pedestrians. A key ingredient of our approach is Pedestrian Optimal Reciprocal Collision Avoidance, a pedestrian motion prediction model that accounts for both a pedestrian's global navigation intention and local interacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2018-10, Vol.3 (4), p.3418-3425
Hauptverfasser: Yuanfu Luo, Panpan Cai, Bera, Aniket, Hsu, David, Wee Sun Lee, Manocha, Dinesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter presents a planning system for autonomous driving among many pedestrians. A key ingredient of our approach is Pedestrian Optimal Reciprocal Collision Avoidance, a pedestrian motion prediction model that accounts for both a pedestrian's global navigation intention and local interactions with the vehicle and other pedestrians. Unfortunately, the autonomous vehicle does not know the pedestrians' intentions a priori and requires a planning algorithm that hedges against the uncertainty in pedestrian intentions. Our planning system combines a Partially Observable Markov Decision Process algorithm with the pedestrian motion model and runs in real time. Experiments show that it enables a robot scooter to drive safely, efficiently, and smoothly in a crowd with a density of nearly one person per square meter.
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2018.2852793