Filling Radii of Finitely Presented Groups

The filling radius function R of Gromov measures the minimal radii of van Kampen diagrams filling edge‐circuits w in the Cayley 2‐complex of a finite presentation P. It is known that the Dehn function can be bounded above by a double exponential in R and the length of the loop, and it is an open que...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of mathematics 2002-03, Vol.53 (1), p.31-45
Hauptverfasser: Gersten, Steve M., Riley, Tim R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The filling radius function R of Gromov measures the minimal radii of van Kampen diagrams filling edge‐circuits w in the Cayley 2‐complex of a finite presentation P. It is known that the Dehn function can be bounded above by a double exponential in R and the length of the loop, and it is an open question whether a single exponential bound suffices. We define the upper filling radius R̄ (w) of w to be the maximal radius of minimal area fillings of w and let R̄ be the corresponding filling function, so R̄ (n) is the maximum of R̄ (w) over all edge‐circuits w of length at most n. We show that the Dehn function is bounded above by a single exponential in R̄ and the length of the loop. We give an example of a finite presentation P where R is linearly bounded but R̄ grows exponentially.
ISSN:0033-5606
1464-3847
DOI:10.1093/qjmath/53.1.31