Optimized composite finite difference schemes for atmospheric flow modeling

In this paper, we use some finite difference methods in order to solve an atmospheric flow problem described by an advection–diffusion equation. This flow problem was solved by Clancy using forward‐time central space (FTCS) scheme and is challenging to simulate due to large errors in phase and ampli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2019-11, Vol.35 (6), p.2171-2192
1. Verfasser: Appadu, Appanah Rao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2192
container_issue 6
container_start_page 2171
container_title Numerical methods for partial differential equations
container_volume 35
creator Appadu, Appanah Rao
description In this paper, we use some finite difference methods in order to solve an atmospheric flow problem described by an advection–diffusion equation. This flow problem was solved by Clancy using forward‐time central space (FTCS) scheme and is challenging to simulate due to large errors in phase and amplitude which are generated especially over long propagation times. Clancy also derived stability limits for FTCS scheme. We use Von Neumann stability analysis and the approach of Hindmarsch et al. which is an improved technique over that of Clancy in order to obtain the region of stability of some methods such as FTCS, Lax–Wendroff (LW), Crank–Nicolson. We also construct a nonstandard finite difference (NSFD) scheme. Properties like stability and consistency are studied. To improve the results due to significant numerical dispersion or numerical dissipation, we derive a new composite scheme consisting of three applications of LW followed by one application of NSFD. The latter acts like a filter to remove the dispersive oscillations from LW. We further improve the composite scheme by computing the optimal temporal step size at a given spatial step size using two techniques namely; by minimizing the square of dispersion error and by minimizing the sum of squares of dispersion and dissipation errors.
doi_str_mv 10.1002/num.22407
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2297493983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2297493983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2977-893fc967775c15a44e67cac67c11088c50409ffdfe3312835162becc9655b45f3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqEw8A8iMTGktR07jkdU8SUKXajEZqXOM3UVx8FOVZVfT0pYWd5dzn1XOghdEzwlGNNZu3NTShkWJyghWJYZZbQ4RQkWTGaEy49zdBHjFmNCOJEJell2vXX2G-pUe9f5aHtIjW2PUVtjIECrIY16Aw5ianxIq9752G0gWJ2axu9T52tobPt5ic5M1US4-ssJWj3cv8-fssXy8Xl-t8g0lUJkpcyNloUQgmvCK8agELrSwyEEl6XmmGFpTG0gzwktc04KugY9VDhfM27yCboZ_3bBf-0g9mrrd6EdJhUdFpjMZZkP1O1I6eBjDGBUF6yrwkERrI6u1OBK_boa2NnI7m0Dh_9B9bZ6HRs_md9rLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2297493983</pqid></control><display><type>article</type><title>Optimized composite finite difference schemes for atmospheric flow modeling</title><source>Wiley Online Library All Journals</source><creator>Appadu, Appanah Rao</creator><creatorcontrib>Appadu, Appanah Rao</creatorcontrib><description>In this paper, we use some finite difference methods in order to solve an atmospheric flow problem described by an advection–diffusion equation. This flow problem was solved by Clancy using forward‐time central space (FTCS) scheme and is challenging to simulate due to large errors in phase and amplitude which are generated especially over long propagation times. Clancy also derived stability limits for FTCS scheme. We use Von Neumann stability analysis and the approach of Hindmarsch et al. which is an improved technique over that of Clancy in order to obtain the region of stability of some methods such as FTCS, Lax–Wendroff (LW), Crank–Nicolson. We also construct a nonstandard finite difference (NSFD) scheme. Properties like stability and consistency are studied. To improve the results due to significant numerical dispersion or numerical dissipation, we derive a new composite scheme consisting of three applications of LW followed by one application of NSFD. The latter acts like a filter to remove the dispersive oscillations from LW. We further improve the composite scheme by computing the optimal temporal step size at a given spatial step size using two techniques namely; by minimizing the square of dispersion error and by minimizing the sum of squares of dispersion and dissipation errors.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22407</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Advection-diffusion equation ; atmospheric modeling ; Atmospheric models ; composite schemes ; Computer simulation ; Dispersion ; Finite difference method ; Mathematical analysis ; Numerical dissipation ; Stability analysis</subject><ispartof>Numerical methods for partial differential equations, 2019-11, Vol.35 (6), p.2171-2192</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2977-893fc967775c15a44e67cac67c11088c50409ffdfe3312835162becc9655b45f3</citedby><cites>FETCH-LOGICAL-c2977-893fc967775c15a44e67cac67c11088c50409ffdfe3312835162becc9655b45f3</cites><orcidid>0000-0001-9783-9790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.22407$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.22407$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Appadu, Appanah Rao</creatorcontrib><title>Optimized composite finite difference schemes for atmospheric flow modeling</title><title>Numerical methods for partial differential equations</title><description>In this paper, we use some finite difference methods in order to solve an atmospheric flow problem described by an advection–diffusion equation. This flow problem was solved by Clancy using forward‐time central space (FTCS) scheme and is challenging to simulate due to large errors in phase and amplitude which are generated especially over long propagation times. Clancy also derived stability limits for FTCS scheme. We use Von Neumann stability analysis and the approach of Hindmarsch et al. which is an improved technique over that of Clancy in order to obtain the region of stability of some methods such as FTCS, Lax–Wendroff (LW), Crank–Nicolson. We also construct a nonstandard finite difference (NSFD) scheme. Properties like stability and consistency are studied. To improve the results due to significant numerical dispersion or numerical dissipation, we derive a new composite scheme consisting of three applications of LW followed by one application of NSFD. The latter acts like a filter to remove the dispersive oscillations from LW. We further improve the composite scheme by computing the optimal temporal step size at a given spatial step size using two techniques namely; by minimizing the square of dispersion error and by minimizing the sum of squares of dispersion and dissipation errors.</description><subject>Advection-diffusion equation</subject><subject>atmospheric modeling</subject><subject>Atmospheric models</subject><subject>composite schemes</subject><subject>Computer simulation</subject><subject>Dispersion</subject><subject>Finite difference method</subject><subject>Mathematical analysis</subject><subject>Numerical dissipation</subject><subject>Stability analysis</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqEw8A8iMTGktR07jkdU8SUKXajEZqXOM3UVx8FOVZVfT0pYWd5dzn1XOghdEzwlGNNZu3NTShkWJyghWJYZZbQ4RQkWTGaEy49zdBHjFmNCOJEJell2vXX2G-pUe9f5aHtIjW2PUVtjIECrIY16Aw5ianxIq9752G0gWJ2axu9T52tobPt5ic5M1US4-ssJWj3cv8-fssXy8Xl-t8g0lUJkpcyNloUQgmvCK8agELrSwyEEl6XmmGFpTG0gzwktc04KugY9VDhfM27yCboZ_3bBf-0g9mrrd6EdJhUdFpjMZZkP1O1I6eBjDGBUF6yrwkERrI6u1OBK_boa2NnI7m0Dh_9B9bZ6HRs_md9rLw</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Appadu, Appanah Rao</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9783-9790</orcidid></search><sort><creationdate>201911</creationdate><title>Optimized composite finite difference schemes for atmospheric flow modeling</title><author>Appadu, Appanah Rao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2977-893fc967775c15a44e67cac67c11088c50409ffdfe3312835162becc9655b45f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Advection-diffusion equation</topic><topic>atmospheric modeling</topic><topic>Atmospheric models</topic><topic>composite schemes</topic><topic>Computer simulation</topic><topic>Dispersion</topic><topic>Finite difference method</topic><topic>Mathematical analysis</topic><topic>Numerical dissipation</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Appadu, Appanah Rao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Appadu, Appanah Rao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized composite finite difference schemes for atmospheric flow modeling</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2019-11</date><risdate>2019</risdate><volume>35</volume><issue>6</issue><spage>2171</spage><epage>2192</epage><pages>2171-2192</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>In this paper, we use some finite difference methods in order to solve an atmospheric flow problem described by an advection–diffusion equation. This flow problem was solved by Clancy using forward‐time central space (FTCS) scheme and is challenging to simulate due to large errors in phase and amplitude which are generated especially over long propagation times. Clancy also derived stability limits for FTCS scheme. We use Von Neumann stability analysis and the approach of Hindmarsch et al. which is an improved technique over that of Clancy in order to obtain the region of stability of some methods such as FTCS, Lax–Wendroff (LW), Crank–Nicolson. We also construct a nonstandard finite difference (NSFD) scheme. Properties like stability and consistency are studied. To improve the results due to significant numerical dispersion or numerical dissipation, we derive a new composite scheme consisting of three applications of LW followed by one application of NSFD. The latter acts like a filter to remove the dispersive oscillations from LW. We further improve the composite scheme by computing the optimal temporal step size at a given spatial step size using two techniques namely; by minimizing the square of dispersion error and by minimizing the sum of squares of dispersion and dissipation errors.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/num.22407</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-9783-9790</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2019-11, Vol.35 (6), p.2171-2192
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_2297493983
source Wiley Online Library All Journals
subjects Advection-diffusion equation
atmospheric modeling
Atmospheric models
composite schemes
Computer simulation
Dispersion
Finite difference method
Mathematical analysis
Numerical dissipation
Stability analysis
title Optimized composite finite difference schemes for atmospheric flow modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20composite%20finite%20difference%20schemes%20for%20atmospheric%20flow%20modeling&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Appadu,%20Appanah%20Rao&rft.date=2019-11&rft.volume=35&rft.issue=6&rft.spage=2171&rft.epage=2192&rft.pages=2171-2192&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22407&rft_dat=%3Cproquest_cross%3E2297493983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2297493983&rft_id=info:pmid/&rfr_iscdi=true