Edemagenic gain and interstitial fluid volume regulation
1 Michael E. DeBakey Institute, Texas A&M University, College Station, Texas; and 2 Center for Microvascular and Lymphatic Studies, The University of Texas Medical School, Houston, Texas Submitted 18 May 2007 ; accepted in final form 27 November 2007 Under physiological conditions, interstitial...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2008-02, Vol.294 (2), p.R651-R659 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | R659 |
---|---|
container_issue | 2 |
container_start_page | R651 |
container_title | American journal of physiology. Regulatory, integrative and comparative physiology |
container_volume | 294 |
creator | Dongaonkar, R. M Quick, C. M Stewart, R. H Drake, R. E Cox, C. S., Jr Laine, G. A |
description | 1 Michael E. DeBakey Institute, Texas A&M University, College Station, Texas; and 2 Center for Microvascular and Lymphatic Studies, The University of Texas Medical School, Houston, Texas
Submitted 18 May 2007
; accepted in final form 27 November 2007
Under physiological conditions, interstitial fluid volume is tightly regulated by balancing microvascular filtration and lymphatic return to the central venous circulation. Even though microvascular filtration and lymphatic return are governed by conservation of mass, their interaction can result in exceedingly complex behavior. Without making simplifying assumptions, investigators must solve the fluid balance equations numerically, which limits the generality of the results. We thus made critical simplifying assumptions to develop a simple solution to the standard fluid balance equations that is expressed as an algebraic formula. Using a classical approach to describe systems with negative feedback, we formulated our solution as a "gain" relating the change in interstitial fluid volume to a change in effective microvascular driving pressure. The resulting "edemagenic gain" is a function of microvascular filtration coefficient ( K f ), effective lymphatic resistance ( R L ), and interstitial compliance ( C ). This formulation suggests two types of gain: "multivariate" dependent on C , R L , and K f , and "compliance-dominated" approximately equal to C . The latter forms a basis of a novel method to estimate C without measuring interstitial fluid pressure. Data from ovine experiments illustrate how edemagenic gain is altered with pulmonary edema induced by venous hypertension, histamine, and endotoxin. Reformulation of the classical equations governing fluid balance in terms of edemagenic gain thus yields new insight into the factors affecting an organ's susceptibility to edema.
Starling-Landis equation; mathematical model; edematogenic
Address for reprint requests and other correspondence: C. M. Quick, Michael E. DeBakey Institute, TAMU 4466, Texas A&M Univ., College Station, TX 77843-4466 (e-mail: cquick{at}tamu.edu ) |
doi_str_mv | 10.1152/ajpregu.00354.2007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_highw</sourceid><recordid>TN_cdi_proquest_journals_229742782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19887480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-bbd67b65a28cc4ddbe1830184e3aedebb8820046f01cd45a2b44f65c778c096e3</originalsourceid><addsrcrecordid>eNqFkEtr3DAURkVJaSZp_0AXxWTRnad6WZKXJeRRCARCuhaydO3RID8q2W3n31eTmRAohKy0uOf7dO9B6DPBa0Iq-s1spwjdssaYVXxNMZbv0CoPaEl4jU_QCjPBSkFIfYrOUtpijDnj7AM6JQpXolZ8hdSVg950MHhbdMYPhRlc4YcZYpr97E0o2rB4V_wew9JDsf8vmNmPw0f0vjUhwafje45-Xl89Xt6Wd_c3Py6_35WWczmXTeOEbERlqLKWO9cAUQwTxYEZcNA0SuXFuWgxsY5nrOG8FZWVUllcC2Dn6Ouhd4rjrwXSrHufLIRgBhiXpCWmFVf5sLdAUislM5nBi__A7bjEIR-hKa0lp1LRDNEDZOOYUoRWT9H3Ju40wXpvXx_t6yf7em8_h74cm5emB_cSOerOQH0ANr7b_PER9LTZJT-Gsdvp6yWER_g7PzfTOtfqB1ERPbk2Z8vXs8_LvGTYP4Kspp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229742782</pqid></control><display><type>article</type><title>Edemagenic gain and interstitial fluid volume regulation</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Dongaonkar, R. M ; Quick, C. M ; Stewart, R. H ; Drake, R. E ; Cox, C. S., Jr ; Laine, G. A</creator><creatorcontrib>Dongaonkar, R. M ; Quick, C. M ; Stewart, R. H ; Drake, R. E ; Cox, C. S., Jr ; Laine, G. A</creatorcontrib><description>1 Michael E. DeBakey Institute, Texas A&M University, College Station, Texas; and 2 Center for Microvascular and Lymphatic Studies, The University of Texas Medical School, Houston, Texas
Submitted 18 May 2007
; accepted in final form 27 November 2007
Under physiological conditions, interstitial fluid volume is tightly regulated by balancing microvascular filtration and lymphatic return to the central venous circulation. Even though microvascular filtration and lymphatic return are governed by conservation of mass, their interaction can result in exceedingly complex behavior. Without making simplifying assumptions, investigators must solve the fluid balance equations numerically, which limits the generality of the results. We thus made critical simplifying assumptions to develop a simple solution to the standard fluid balance equations that is expressed as an algebraic formula. Using a classical approach to describe systems with negative feedback, we formulated our solution as a "gain" relating the change in interstitial fluid volume to a change in effective microvascular driving pressure. The resulting "edemagenic gain" is a function of microvascular filtration coefficient ( K f ), effective lymphatic resistance ( R L ), and interstitial compliance ( C ). This formulation suggests two types of gain: "multivariate" dependent on C , R L , and K f , and "compliance-dominated" approximately equal to C . The latter forms a basis of a novel method to estimate C without measuring interstitial fluid pressure. Data from ovine experiments illustrate how edemagenic gain is altered with pulmonary edema induced by venous hypertension, histamine, and endotoxin. Reformulation of the classical equations governing fluid balance in terms of edemagenic gain thus yields new insight into the factors affecting an organ's susceptibility to edema.
Starling-Landis equation; mathematical model; edematogenic
Address for reprint requests and other correspondence: C. M. Quick, Michael E. DeBakey Institute, TAMU 4466, Texas A&M Univ., College Station, TX 77843-4466 (e-mail: cquick{at}tamu.edu )</description><identifier>ISSN: 0363-6119</identifier><identifier>EISSN: 1522-1490</identifier><identifier>DOI: 10.1152/ajpregu.00354.2007</identifier><identifier>PMID: 18056984</identifier><identifier>CODEN: AJPRDO</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Algebra ; Animals ; Capillaries - physiology ; Cardiovascular disease ; Compliance ; Edema - physiopathology ; Endotoxins - pharmacology ; Estimates ; Extracellular Fluid - metabolism ; Fluids ; Histamine - pharmacology ; Histamine Agonists - pharmacology ; Lymphatic System - physiology ; Models, Biological ; Sheep ; Water-Electrolyte Balance - drug effects ; Water-Electrolyte Balance - physiology</subject><ispartof>American journal of physiology. Regulatory, integrative and comparative physiology, 2008-02, Vol.294 (2), p.R651-R659</ispartof><rights>Copyright American Physiological Society Feb 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-bbd67b65a28cc4ddbe1830184e3aedebb8820046f01cd45a2b44f65c778c096e3</citedby><cites>FETCH-LOGICAL-c447t-bbd67b65a28cc4ddbe1830184e3aedebb8820046f01cd45a2b44f65c778c096e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3026,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18056984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dongaonkar, R. M</creatorcontrib><creatorcontrib>Quick, C. M</creatorcontrib><creatorcontrib>Stewart, R. H</creatorcontrib><creatorcontrib>Drake, R. E</creatorcontrib><creatorcontrib>Cox, C. S., Jr</creatorcontrib><creatorcontrib>Laine, G. A</creatorcontrib><title>Edemagenic gain and interstitial fluid volume regulation</title><title>American journal of physiology. Regulatory, integrative and comparative physiology</title><addtitle>Am J Physiol Regul Integr Comp Physiol</addtitle><description>1 Michael E. DeBakey Institute, Texas A&M University, College Station, Texas; and 2 Center for Microvascular and Lymphatic Studies, The University of Texas Medical School, Houston, Texas
Submitted 18 May 2007
; accepted in final form 27 November 2007
Under physiological conditions, interstitial fluid volume is tightly regulated by balancing microvascular filtration and lymphatic return to the central venous circulation. Even though microvascular filtration and lymphatic return are governed by conservation of mass, their interaction can result in exceedingly complex behavior. Without making simplifying assumptions, investigators must solve the fluid balance equations numerically, which limits the generality of the results. We thus made critical simplifying assumptions to develop a simple solution to the standard fluid balance equations that is expressed as an algebraic formula. Using a classical approach to describe systems with negative feedback, we formulated our solution as a "gain" relating the change in interstitial fluid volume to a change in effective microvascular driving pressure. The resulting "edemagenic gain" is a function of microvascular filtration coefficient ( K f ), effective lymphatic resistance ( R L ), and interstitial compliance ( C ). This formulation suggests two types of gain: "multivariate" dependent on C , R L , and K f , and "compliance-dominated" approximately equal to C . The latter forms a basis of a novel method to estimate C without measuring interstitial fluid pressure. Data from ovine experiments illustrate how edemagenic gain is altered with pulmonary edema induced by venous hypertension, histamine, and endotoxin. Reformulation of the classical equations governing fluid balance in terms of edemagenic gain thus yields new insight into the factors affecting an organ's susceptibility to edema.
Starling-Landis equation; mathematical model; edematogenic
Address for reprint requests and other correspondence: C. M. Quick, Michael E. DeBakey Institute, TAMU 4466, Texas A&M Univ., College Station, TX 77843-4466 (e-mail: cquick{at}tamu.edu )</description><subject>Algebra</subject><subject>Animals</subject><subject>Capillaries - physiology</subject><subject>Cardiovascular disease</subject><subject>Compliance</subject><subject>Edema - physiopathology</subject><subject>Endotoxins - pharmacology</subject><subject>Estimates</subject><subject>Extracellular Fluid - metabolism</subject><subject>Fluids</subject><subject>Histamine - pharmacology</subject><subject>Histamine Agonists - pharmacology</subject><subject>Lymphatic System - physiology</subject><subject>Models, Biological</subject><subject>Sheep</subject><subject>Water-Electrolyte Balance - drug effects</subject><subject>Water-Electrolyte Balance - physiology</subject><issn>0363-6119</issn><issn>1522-1490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtr3DAURkVJaSZp_0AXxWTRnad6WZKXJeRRCARCuhaydO3RID8q2W3n31eTmRAohKy0uOf7dO9B6DPBa0Iq-s1spwjdssaYVXxNMZbv0CoPaEl4jU_QCjPBSkFIfYrOUtpijDnj7AM6JQpXolZ8hdSVg950MHhbdMYPhRlc4YcZYpr97E0o2rB4V_wew9JDsf8vmNmPw0f0vjUhwafje45-Xl89Xt6Wd_c3Py6_35WWczmXTeOEbERlqLKWO9cAUQwTxYEZcNA0SuXFuWgxsY5nrOG8FZWVUllcC2Dn6Ouhd4rjrwXSrHufLIRgBhiXpCWmFVf5sLdAUislM5nBi__A7bjEIR-hKa0lp1LRDNEDZOOYUoRWT9H3Ju40wXpvXx_t6yf7em8_h74cm5emB_cSOerOQH0ANr7b_PER9LTZJT-Gsdvp6yWER_g7PzfTOtfqB1ERPbk2Z8vXs8_LvGTYP4Kspp0</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Dongaonkar, R. M</creator><creator>Quick, C. M</creator><creator>Stewart, R. H</creator><creator>Drake, R. E</creator><creator>Cox, C. S., Jr</creator><creator>Laine, G. A</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7T7</scope><scope>7X8</scope></search><sort><creationdate>20080201</creationdate><title>Edemagenic gain and interstitial fluid volume regulation</title><author>Dongaonkar, R. M ; Quick, C. M ; Stewart, R. H ; Drake, R. E ; Cox, C. S., Jr ; Laine, G. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-bbd67b65a28cc4ddbe1830184e3aedebb8820046f01cd45a2b44f65c778c096e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Animals</topic><topic>Capillaries - physiology</topic><topic>Cardiovascular disease</topic><topic>Compliance</topic><topic>Edema - physiopathology</topic><topic>Endotoxins - pharmacology</topic><topic>Estimates</topic><topic>Extracellular Fluid - metabolism</topic><topic>Fluids</topic><topic>Histamine - pharmacology</topic><topic>Histamine Agonists - pharmacology</topic><topic>Lymphatic System - physiology</topic><topic>Models, Biological</topic><topic>Sheep</topic><topic>Water-Electrolyte Balance - drug effects</topic><topic>Water-Electrolyte Balance - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dongaonkar, R. M</creatorcontrib><creatorcontrib>Quick, C. M</creatorcontrib><creatorcontrib>Stewart, R. H</creatorcontrib><creatorcontrib>Drake, R. E</creatorcontrib><creatorcontrib>Cox, C. S., Jr</creatorcontrib><creatorcontrib>Laine, G. A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of physiology. Regulatory, integrative and comparative physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dongaonkar, R. M</au><au>Quick, C. M</au><au>Stewart, R. H</au><au>Drake, R. E</au><au>Cox, C. S., Jr</au><au>Laine, G. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edemagenic gain and interstitial fluid volume regulation</atitle><jtitle>American journal of physiology. Regulatory, integrative and comparative physiology</jtitle><addtitle>Am J Physiol Regul Integr Comp Physiol</addtitle><date>2008-02-01</date><risdate>2008</risdate><volume>294</volume><issue>2</issue><spage>R651</spage><epage>R659</epage><pages>R651-R659</pages><issn>0363-6119</issn><eissn>1522-1490</eissn><coden>AJPRDO</coden><abstract>1 Michael E. DeBakey Institute, Texas A&M University, College Station, Texas; and 2 Center for Microvascular and Lymphatic Studies, The University of Texas Medical School, Houston, Texas
Submitted 18 May 2007
; accepted in final form 27 November 2007
Under physiological conditions, interstitial fluid volume is tightly regulated by balancing microvascular filtration and lymphatic return to the central venous circulation. Even though microvascular filtration and lymphatic return are governed by conservation of mass, their interaction can result in exceedingly complex behavior. Without making simplifying assumptions, investigators must solve the fluid balance equations numerically, which limits the generality of the results. We thus made critical simplifying assumptions to develop a simple solution to the standard fluid balance equations that is expressed as an algebraic formula. Using a classical approach to describe systems with negative feedback, we formulated our solution as a "gain" relating the change in interstitial fluid volume to a change in effective microvascular driving pressure. The resulting "edemagenic gain" is a function of microvascular filtration coefficient ( K f ), effective lymphatic resistance ( R L ), and interstitial compliance ( C ). This formulation suggests two types of gain: "multivariate" dependent on C , R L , and K f , and "compliance-dominated" approximately equal to C . The latter forms a basis of a novel method to estimate C without measuring interstitial fluid pressure. Data from ovine experiments illustrate how edemagenic gain is altered with pulmonary edema induced by venous hypertension, histamine, and endotoxin. Reformulation of the classical equations governing fluid balance in terms of edemagenic gain thus yields new insight into the factors affecting an organ's susceptibility to edema.
Starling-Landis equation; mathematical model; edematogenic
Address for reprint requests and other correspondence: C. M. Quick, Michael E. DeBakey Institute, TAMU 4466, Texas A&M Univ., College Station, TX 77843-4466 (e-mail: cquick{at}tamu.edu )</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>18056984</pmid><doi>10.1152/ajpregu.00354.2007</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-6119 |
ispartof | American journal of physiology. Regulatory, integrative and comparative physiology, 2008-02, Vol.294 (2), p.R651-R659 |
issn | 0363-6119 1522-1490 |
language | eng |
recordid | cdi_proquest_journals_229742782 |
source | MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algebra Animals Capillaries - physiology Cardiovascular disease Compliance Edema - physiopathology Endotoxins - pharmacology Estimates Extracellular Fluid - metabolism Fluids Histamine - pharmacology Histamine Agonists - pharmacology Lymphatic System - physiology Models, Biological Sheep Water-Electrolyte Balance - drug effects Water-Electrolyte Balance - physiology |
title | Edemagenic gain and interstitial fluid volume regulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edemagenic%20gain%20and%20interstitial%20fluid%20volume%20regulation&rft.jtitle=American%20journal%20of%20physiology.%20Regulatory,%20integrative%20and%20comparative%20physiology&rft.au=Dongaonkar,%20R.%20M&rft.date=2008-02-01&rft.volume=294&rft.issue=2&rft.spage=R651&rft.epage=R659&rft.pages=R651-R659&rft.issn=0363-6119&rft.eissn=1522-1490&rft.coden=AJPRDO&rft_id=info:doi/10.1152/ajpregu.00354.2007&rft_dat=%3Cproquest_highw%3E19887480%3C/proquest_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=229742782&rft_id=info:pmid/18056984&rfr_iscdi=true |