Edemagenic gain and interstitial fluid volume regulation

1 Michael E. DeBakey Institute, Texas A&M University, College Station, Texas; and 2 Center for Microvascular and Lymphatic Studies, The University of Texas Medical School, Houston, Texas Submitted 18 May 2007 ; accepted in final form 27 November 2007 Under physiological conditions, interstitial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2008-02, Vol.294 (2), p.R651-R659
Hauptverfasser: Dongaonkar, R. M, Quick, C. M, Stewart, R. H, Drake, R. E, Cox, C. S., Jr, Laine, G. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page R659
container_issue 2
container_start_page R651
container_title American journal of physiology. Regulatory, integrative and comparative physiology
container_volume 294
creator Dongaonkar, R. M
Quick, C. M
Stewart, R. H
Drake, R. E
Cox, C. S., Jr
Laine, G. A
description 1 Michael E. DeBakey Institute, Texas A&M University, College Station, Texas; and 2 Center for Microvascular and Lymphatic Studies, The University of Texas Medical School, Houston, Texas Submitted 18 May 2007 ; accepted in final form 27 November 2007 Under physiological conditions, interstitial fluid volume is tightly regulated by balancing microvascular filtration and lymphatic return to the central venous circulation. Even though microvascular filtration and lymphatic return are governed by conservation of mass, their interaction can result in exceedingly complex behavior. Without making simplifying assumptions, investigators must solve the fluid balance equations numerically, which limits the generality of the results. We thus made critical simplifying assumptions to develop a simple solution to the standard fluid balance equations that is expressed as an algebraic formula. Using a classical approach to describe systems with negative feedback, we formulated our solution as a "gain" relating the change in interstitial fluid volume to a change in effective microvascular driving pressure. The resulting "edemagenic gain" is a function of microvascular filtration coefficient ( K f ), effective lymphatic resistance ( R L ), and interstitial compliance ( C ). This formulation suggests two types of gain: "multivariate" dependent on C , R L , and K f , and "compliance-dominated" approximately equal to C . The latter forms a basis of a novel method to estimate C without measuring interstitial fluid pressure. Data from ovine experiments illustrate how edemagenic gain is altered with pulmonary edema induced by venous hypertension, histamine, and endotoxin. Reformulation of the classical equations governing fluid balance in terms of edemagenic gain thus yields new insight into the factors affecting an organ's susceptibility to edema. Starling-Landis equation; mathematical model; edematogenic Address for reprint requests and other correspondence: C. M. Quick, Michael E. DeBakey Institute, TAMU 4466, Texas A&M Univ., College Station, TX 77843-4466 (e-mail: cquick{at}tamu.edu )
doi_str_mv 10.1152/ajpregu.00354.2007
format Article
fullrecord <record><control><sourceid>proquest_highw</sourceid><recordid>TN_cdi_proquest_journals_229742782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19887480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-bbd67b65a28cc4ddbe1830184e3aedebb8820046f01cd45a2b44f65c778c096e3</originalsourceid><addsrcrecordid>eNqFkEtr3DAURkVJaSZp_0AXxWTRnad6WZKXJeRRCARCuhaydO3RID8q2W3n31eTmRAohKy0uOf7dO9B6DPBa0Iq-s1spwjdssaYVXxNMZbv0CoPaEl4jU_QCjPBSkFIfYrOUtpijDnj7AM6JQpXolZ8hdSVg950MHhbdMYPhRlc4YcZYpr97E0o2rB4V_wew9JDsf8vmNmPw0f0vjUhwafje45-Xl89Xt6Wd_c3Py6_35WWczmXTeOEbERlqLKWO9cAUQwTxYEZcNA0SuXFuWgxsY5nrOG8FZWVUllcC2Dn6Ouhd4rjrwXSrHufLIRgBhiXpCWmFVf5sLdAUislM5nBi__A7bjEIR-hKa0lp1LRDNEDZOOYUoRWT9H3Ju40wXpvXx_t6yf7em8_h74cm5emB_cSOerOQH0ANr7b_PER9LTZJT-Gsdvp6yWER_g7PzfTOtfqB1ERPbk2Z8vXs8_LvGTYP4Kspp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229742782</pqid></control><display><type>article</type><title>Edemagenic gain and interstitial fluid volume regulation</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Dongaonkar, R. M ; Quick, C. M ; Stewart, R. H ; Drake, R. E ; Cox, C. S., Jr ; Laine, G. A</creator><creatorcontrib>Dongaonkar, R. M ; Quick, C. M ; Stewart, R. H ; Drake, R. E ; Cox, C. S., Jr ; Laine, G. A</creatorcontrib><description>1 Michael E. DeBakey Institute, Texas A&amp;M University, College Station, Texas; and 2 Center for Microvascular and Lymphatic Studies, The University of Texas Medical School, Houston, Texas Submitted 18 May 2007 ; accepted in final form 27 November 2007 Under physiological conditions, interstitial fluid volume is tightly regulated by balancing microvascular filtration and lymphatic return to the central venous circulation. Even though microvascular filtration and lymphatic return are governed by conservation of mass, their interaction can result in exceedingly complex behavior. Without making simplifying assumptions, investigators must solve the fluid balance equations numerically, which limits the generality of the results. We thus made critical simplifying assumptions to develop a simple solution to the standard fluid balance equations that is expressed as an algebraic formula. Using a classical approach to describe systems with negative feedback, we formulated our solution as a "gain" relating the change in interstitial fluid volume to a change in effective microvascular driving pressure. The resulting "edemagenic gain" is a function of microvascular filtration coefficient ( K f ), effective lymphatic resistance ( R L ), and interstitial compliance ( C ). This formulation suggests two types of gain: "multivariate" dependent on C , R L , and K f , and "compliance-dominated" approximately equal to C . The latter forms a basis of a novel method to estimate C without measuring interstitial fluid pressure. Data from ovine experiments illustrate how edemagenic gain is altered with pulmonary edema induced by venous hypertension, histamine, and endotoxin. Reformulation of the classical equations governing fluid balance in terms of edemagenic gain thus yields new insight into the factors affecting an organ's susceptibility to edema. Starling-Landis equation; mathematical model; edematogenic Address for reprint requests and other correspondence: C. M. Quick, Michael E. DeBakey Institute, TAMU 4466, Texas A&amp;M Univ., College Station, TX 77843-4466 (e-mail: cquick{at}tamu.edu )</description><identifier>ISSN: 0363-6119</identifier><identifier>EISSN: 1522-1490</identifier><identifier>DOI: 10.1152/ajpregu.00354.2007</identifier><identifier>PMID: 18056984</identifier><identifier>CODEN: AJPRDO</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Algebra ; Animals ; Capillaries - physiology ; Cardiovascular disease ; Compliance ; Edema - physiopathology ; Endotoxins - pharmacology ; Estimates ; Extracellular Fluid - metabolism ; Fluids ; Histamine - pharmacology ; Histamine Agonists - pharmacology ; Lymphatic System - physiology ; Models, Biological ; Sheep ; Water-Electrolyte Balance - drug effects ; Water-Electrolyte Balance - physiology</subject><ispartof>American journal of physiology. Regulatory, integrative and comparative physiology, 2008-02, Vol.294 (2), p.R651-R659</ispartof><rights>Copyright American Physiological Society Feb 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-bbd67b65a28cc4ddbe1830184e3aedebb8820046f01cd45a2b44f65c778c096e3</citedby><cites>FETCH-LOGICAL-c447t-bbd67b65a28cc4ddbe1830184e3aedebb8820046f01cd45a2b44f65c778c096e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3026,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18056984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dongaonkar, R. M</creatorcontrib><creatorcontrib>Quick, C. M</creatorcontrib><creatorcontrib>Stewart, R. H</creatorcontrib><creatorcontrib>Drake, R. E</creatorcontrib><creatorcontrib>Cox, C. S., Jr</creatorcontrib><creatorcontrib>Laine, G. A</creatorcontrib><title>Edemagenic gain and interstitial fluid volume regulation</title><title>American journal of physiology. Regulatory, integrative and comparative physiology</title><addtitle>Am J Physiol Regul Integr Comp Physiol</addtitle><description>1 Michael E. DeBakey Institute, Texas A&amp;M University, College Station, Texas; and 2 Center for Microvascular and Lymphatic Studies, The University of Texas Medical School, Houston, Texas Submitted 18 May 2007 ; accepted in final form 27 November 2007 Under physiological conditions, interstitial fluid volume is tightly regulated by balancing microvascular filtration and lymphatic return to the central venous circulation. Even though microvascular filtration and lymphatic return are governed by conservation of mass, their interaction can result in exceedingly complex behavior. Without making simplifying assumptions, investigators must solve the fluid balance equations numerically, which limits the generality of the results. We thus made critical simplifying assumptions to develop a simple solution to the standard fluid balance equations that is expressed as an algebraic formula. Using a classical approach to describe systems with negative feedback, we formulated our solution as a "gain" relating the change in interstitial fluid volume to a change in effective microvascular driving pressure. The resulting "edemagenic gain" is a function of microvascular filtration coefficient ( K f ), effective lymphatic resistance ( R L ), and interstitial compliance ( C ). This formulation suggests two types of gain: "multivariate" dependent on C , R L , and K f , and "compliance-dominated" approximately equal to C . The latter forms a basis of a novel method to estimate C without measuring interstitial fluid pressure. Data from ovine experiments illustrate how edemagenic gain is altered with pulmonary edema induced by venous hypertension, histamine, and endotoxin. Reformulation of the classical equations governing fluid balance in terms of edemagenic gain thus yields new insight into the factors affecting an organ's susceptibility to edema. Starling-Landis equation; mathematical model; edematogenic Address for reprint requests and other correspondence: C. M. Quick, Michael E. DeBakey Institute, TAMU 4466, Texas A&amp;M Univ., College Station, TX 77843-4466 (e-mail: cquick{at}tamu.edu )</description><subject>Algebra</subject><subject>Animals</subject><subject>Capillaries - physiology</subject><subject>Cardiovascular disease</subject><subject>Compliance</subject><subject>Edema - physiopathology</subject><subject>Endotoxins - pharmacology</subject><subject>Estimates</subject><subject>Extracellular Fluid - metabolism</subject><subject>Fluids</subject><subject>Histamine - pharmacology</subject><subject>Histamine Agonists - pharmacology</subject><subject>Lymphatic System - physiology</subject><subject>Models, Biological</subject><subject>Sheep</subject><subject>Water-Electrolyte Balance - drug effects</subject><subject>Water-Electrolyte Balance - physiology</subject><issn>0363-6119</issn><issn>1522-1490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtr3DAURkVJaSZp_0AXxWTRnad6WZKXJeRRCARCuhaydO3RID8q2W3n31eTmRAohKy0uOf7dO9B6DPBa0Iq-s1spwjdssaYVXxNMZbv0CoPaEl4jU_QCjPBSkFIfYrOUtpijDnj7AM6JQpXolZ8hdSVg950MHhbdMYPhRlc4YcZYpr97E0o2rB4V_wew9JDsf8vmNmPw0f0vjUhwafje45-Xl89Xt6Wd_c3Py6_35WWczmXTeOEbERlqLKWO9cAUQwTxYEZcNA0SuXFuWgxsY5nrOG8FZWVUllcC2Dn6Ouhd4rjrwXSrHufLIRgBhiXpCWmFVf5sLdAUislM5nBi__A7bjEIR-hKa0lp1LRDNEDZOOYUoRWT9H3Ju40wXpvXx_t6yf7em8_h74cm5emB_cSOerOQH0ANr7b_PER9LTZJT-Gsdvp6yWER_g7PzfTOtfqB1ERPbk2Z8vXs8_LvGTYP4Kspp0</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Dongaonkar, R. M</creator><creator>Quick, C. M</creator><creator>Stewart, R. H</creator><creator>Drake, R. E</creator><creator>Cox, C. S., Jr</creator><creator>Laine, G. A</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7T7</scope><scope>7X8</scope></search><sort><creationdate>20080201</creationdate><title>Edemagenic gain and interstitial fluid volume regulation</title><author>Dongaonkar, R. M ; Quick, C. M ; Stewart, R. H ; Drake, R. E ; Cox, C. S., Jr ; Laine, G. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-bbd67b65a28cc4ddbe1830184e3aedebb8820046f01cd45a2b44f65c778c096e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Animals</topic><topic>Capillaries - physiology</topic><topic>Cardiovascular disease</topic><topic>Compliance</topic><topic>Edema - physiopathology</topic><topic>Endotoxins - pharmacology</topic><topic>Estimates</topic><topic>Extracellular Fluid - metabolism</topic><topic>Fluids</topic><topic>Histamine - pharmacology</topic><topic>Histamine Agonists - pharmacology</topic><topic>Lymphatic System - physiology</topic><topic>Models, Biological</topic><topic>Sheep</topic><topic>Water-Electrolyte Balance - drug effects</topic><topic>Water-Electrolyte Balance - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dongaonkar, R. M</creatorcontrib><creatorcontrib>Quick, C. M</creatorcontrib><creatorcontrib>Stewart, R. H</creatorcontrib><creatorcontrib>Drake, R. E</creatorcontrib><creatorcontrib>Cox, C. S., Jr</creatorcontrib><creatorcontrib>Laine, G. A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of physiology. Regulatory, integrative and comparative physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dongaonkar, R. M</au><au>Quick, C. M</au><au>Stewart, R. H</au><au>Drake, R. E</au><au>Cox, C. S., Jr</au><au>Laine, G. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edemagenic gain and interstitial fluid volume regulation</atitle><jtitle>American journal of physiology. Regulatory, integrative and comparative physiology</jtitle><addtitle>Am J Physiol Regul Integr Comp Physiol</addtitle><date>2008-02-01</date><risdate>2008</risdate><volume>294</volume><issue>2</issue><spage>R651</spage><epage>R659</epage><pages>R651-R659</pages><issn>0363-6119</issn><eissn>1522-1490</eissn><coden>AJPRDO</coden><abstract>1 Michael E. DeBakey Institute, Texas A&amp;M University, College Station, Texas; and 2 Center for Microvascular and Lymphatic Studies, The University of Texas Medical School, Houston, Texas Submitted 18 May 2007 ; accepted in final form 27 November 2007 Under physiological conditions, interstitial fluid volume is tightly regulated by balancing microvascular filtration and lymphatic return to the central venous circulation. Even though microvascular filtration and lymphatic return are governed by conservation of mass, their interaction can result in exceedingly complex behavior. Without making simplifying assumptions, investigators must solve the fluid balance equations numerically, which limits the generality of the results. We thus made critical simplifying assumptions to develop a simple solution to the standard fluid balance equations that is expressed as an algebraic formula. Using a classical approach to describe systems with negative feedback, we formulated our solution as a "gain" relating the change in interstitial fluid volume to a change in effective microvascular driving pressure. The resulting "edemagenic gain" is a function of microvascular filtration coefficient ( K f ), effective lymphatic resistance ( R L ), and interstitial compliance ( C ). This formulation suggests two types of gain: "multivariate" dependent on C , R L , and K f , and "compliance-dominated" approximately equal to C . The latter forms a basis of a novel method to estimate C without measuring interstitial fluid pressure. Data from ovine experiments illustrate how edemagenic gain is altered with pulmonary edema induced by venous hypertension, histamine, and endotoxin. Reformulation of the classical equations governing fluid balance in terms of edemagenic gain thus yields new insight into the factors affecting an organ's susceptibility to edema. Starling-Landis equation; mathematical model; edematogenic Address for reprint requests and other correspondence: C. M. Quick, Michael E. DeBakey Institute, TAMU 4466, Texas A&amp;M Univ., College Station, TX 77843-4466 (e-mail: cquick{at}tamu.edu )</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>18056984</pmid><doi>10.1152/ajpregu.00354.2007</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-6119
ispartof American journal of physiology. Regulatory, integrative and comparative physiology, 2008-02, Vol.294 (2), p.R651-R659
issn 0363-6119
1522-1490
language eng
recordid cdi_proquest_journals_229742782
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algebra
Animals
Capillaries - physiology
Cardiovascular disease
Compliance
Edema - physiopathology
Endotoxins - pharmacology
Estimates
Extracellular Fluid - metabolism
Fluids
Histamine - pharmacology
Histamine Agonists - pharmacology
Lymphatic System - physiology
Models, Biological
Sheep
Water-Electrolyte Balance - drug effects
Water-Electrolyte Balance - physiology
title Edemagenic gain and interstitial fluid volume regulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edemagenic%20gain%20and%20interstitial%20fluid%20volume%20regulation&rft.jtitle=American%20journal%20of%20physiology.%20Regulatory,%20integrative%20and%20comparative%20physiology&rft.au=Dongaonkar,%20R.%20M&rft.date=2008-02-01&rft.volume=294&rft.issue=2&rft.spage=R651&rft.epage=R659&rft.pages=R651-R659&rft.issn=0363-6119&rft.eissn=1522-1490&rft.coden=AJPRDO&rft_id=info:doi/10.1152/ajpregu.00354.2007&rft_dat=%3Cproquest_highw%3E19887480%3C/proquest_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=229742782&rft_id=info:pmid/18056984&rfr_iscdi=true