Reaching the Energy Density Limit of Layered O3‐NaNi0.5Mn0.5O2 Electrodes via Dual Cu and Ti Substitution

Although being less competitive energy density‐wise, Na‐ion batteries are serious alternatives to Li‐ion ones for applications where cost and sustainability dominate. O3‐type sodium layered oxides could partially overcome the energy limitation, but their practical use is plagued by a reaction proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2019-09, Vol.9 (36), p.n/a
Hauptverfasser: Wang, Qing, Mariyappan, Sathiya, Vergnet, Jean, Abakumov, Artem M., Rousse, Gwenaëlle, Rabuel, François, Chakir, Mohamed, Tarascon, Jean‐Marie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page
container_title Advanced energy materials
container_volume 9
creator Wang, Qing
Mariyappan, Sathiya
Vergnet, Jean
Abakumov, Artem M.
Rousse, Gwenaëlle
Rabuel, François
Chakir, Mohamed
Tarascon, Jean‐Marie
description Although being less competitive energy density‐wise, Na‐ion batteries are serious alternatives to Li‐ion ones for applications where cost and sustainability dominate. O3‐type sodium layered oxides could partially overcome the energy limitation, but their practical use is plagued by a reaction process that enlists numerous phase changes and volume variations while additionally being moisture sensitive. Here, it is shown that the double substitution of Ti for Mn and Cu for Ni in O3‐NaNi0.5−yCuyMn0.5− zTizO2 can alleviate most of these issues. Among this series, electrodes with specific compositions are identified that can reversibly release and uptake ≈0.9 sodium per formula unit via a smooth voltage‐composition profile enlisting minor lattice volume changes upon cycling as opposed to ΔV/V≈23% in the parent NaNi0.5Mn0.5O2 while showing a greater resistance against moisture. The positive attributes of substitution are rationalized by structure considerations supported by density functional theory (DFT) calculations. Electrodes with sustained capacities of ≈180 mAh g−1 are successfully implemented into 18 650 Na‐ion cells having greater performances, energy density‐wise (≈250 Wh L−1), than today's Na3V2(PO4)2F3/HC Na‐ion technology which excels in rate capabilities. These results constitute a step forward in increasing the practicality of Na‐ion technology with additional opportunities for applications in which energy density prevails over rate capability. A co‐substitution strategy to reach the theoretical capacity of layered O3 NaNi0.5Mn0.5O2 with long term cycling performance is explored. The derived NaNi0.5−yCuyMn0.5−zTizO2 material in 18 650 prototype cells with hard carbon (HC) negative electrodes exhibit a cell level specific energy of ≈110 Wh kg−1 that is comparable to the present day Na‐ion technology with poly‐anionic Na3V2(PO4)2F3/HC cells (105–110 Wh kg−1).
doi_str_mv 10.1002/aenm.201901785
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2297028174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2297028174</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3785-68ed14d50d9b89b243628590e888e0c8ff5a24ecbbfc166c707e899b5168f26b3</originalsourceid><addsrcrecordid>eNo9kMtKw0AUhgdRsNRuXQ-4bp1bkpllaeMF0ha0rodJctJOTSc1mSjZ-Qg-o09iSqVncS7wc_6fD6FbSiaUEHZvwO0njFBFaCSDCzSgIRXjUApyed45u0ajptmRvoSihPMBen8Bk22t22C_BRw7qDcdnoNrrO9wYvfW46rAiemghhyv-O_3z9IsLZkEC9e3FcNxCZmvqxwa_GkNnremxLMWG5fjtcWvbdp461tvK3eDrgpTNjD6n0P09hCvZ0_jZPX4PJsm4w3vs_dBIaciD0iuUqlSJnjIZKAISCmBZLIoAsMEZGlaZDQMs4hEIJVKAxrKgoUpH6K7099DXX200Hi9q9ra9ZaaMRURJmkkepU6qb5sCZ0-1HZv6k5Too9A9RGoPgPV03i5OF_8D695aqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2297028174</pqid></control><display><type>article</type><title>Reaching the Energy Density Limit of Layered O3‐NaNi0.5Mn0.5O2 Electrodes via Dual Cu and Ti Substitution</title><source>Access via Wiley Online Library</source><creator>Wang, Qing ; Mariyappan, Sathiya ; Vergnet, Jean ; Abakumov, Artem M. ; Rousse, Gwenaëlle ; Rabuel, François ; Chakir, Mohamed ; Tarascon, Jean‐Marie</creator><creatorcontrib>Wang, Qing ; Mariyappan, Sathiya ; Vergnet, Jean ; Abakumov, Artem M. ; Rousse, Gwenaëlle ; Rabuel, François ; Chakir, Mohamed ; Tarascon, Jean‐Marie</creatorcontrib><description>Although being less competitive energy density‐wise, Na‐ion batteries are serious alternatives to Li‐ion ones for applications where cost and sustainability dominate. O3‐type sodium layered oxides could partially overcome the energy limitation, but their practical use is plagued by a reaction process that enlists numerous phase changes and volume variations while additionally being moisture sensitive. Here, it is shown that the double substitution of Ti for Mn and Cu for Ni in O3‐NaNi0.5−yCuyMn0.5− zTizO2 can alleviate most of these issues. Among this series, electrodes with specific compositions are identified that can reversibly release and uptake ≈0.9 sodium per formula unit via a smooth voltage‐composition profile enlisting minor lattice volume changes upon cycling as opposed to ΔV/V≈23% in the parent NaNi0.5Mn0.5O2 while showing a greater resistance against moisture. The positive attributes of substitution are rationalized by structure considerations supported by density functional theory (DFT) calculations. Electrodes with sustained capacities of ≈180 mAh g−1 are successfully implemented into 18 650 Na‐ion cells having greater performances, energy density‐wise (≈250 Wh L−1), than today's Na3V2(PO4)2F3/HC Na‐ion technology which excels in rate capabilities. These results constitute a step forward in increasing the practicality of Na‐ion technology with additional opportunities for applications in which energy density prevails over rate capability. A co‐substitution strategy to reach the theoretical capacity of layered O3 NaNi0.5Mn0.5O2 with long term cycling performance is explored. The derived NaNi0.5−yCuyMn0.5−zTizO2 material in 18 650 prototype cells with hard carbon (HC) negative electrodes exhibit a cell level specific energy of ≈110 Wh kg−1 that is comparable to the present day Na‐ion technology with poly‐anionic Na3V2(PO4)2F3/HC cells (105–110 Wh kg−1).</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201901785</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>18 650 prototype cells ; air stability ; Alternative energy sources ; Composition ; Copper ; Density functional theory ; Electrodes ; Energy limitation ; Flux density ; high energy ; Manganese ; Moisture resistance ; Nickel ; O3‐type layered oxides ; Phase transitions ; Rechargeable batteries ; Sodium ; sodium‐ion batteries ; Substitution reactions ; Titanium</subject><ispartof>Advanced energy materials, 2019-09, Vol.9 (36), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7059-6845 ; 0000-0003-2851-5906 ; 0000-0001-6137-6923 ; 0000-0002-7135-4629 ; 0000-0003-2131-5960 ; 0000-0001-8877-0015 ; 0000-0001-8030-9187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201901785$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201901785$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Mariyappan, Sathiya</creatorcontrib><creatorcontrib>Vergnet, Jean</creatorcontrib><creatorcontrib>Abakumov, Artem M.</creatorcontrib><creatorcontrib>Rousse, Gwenaëlle</creatorcontrib><creatorcontrib>Rabuel, François</creatorcontrib><creatorcontrib>Chakir, Mohamed</creatorcontrib><creatorcontrib>Tarascon, Jean‐Marie</creatorcontrib><title>Reaching the Energy Density Limit of Layered O3‐NaNi0.5Mn0.5O2 Electrodes via Dual Cu and Ti Substitution</title><title>Advanced energy materials</title><description>Although being less competitive energy density‐wise, Na‐ion batteries are serious alternatives to Li‐ion ones for applications where cost and sustainability dominate. O3‐type sodium layered oxides could partially overcome the energy limitation, but their practical use is plagued by a reaction process that enlists numerous phase changes and volume variations while additionally being moisture sensitive. Here, it is shown that the double substitution of Ti for Mn and Cu for Ni in O3‐NaNi0.5−yCuyMn0.5− zTizO2 can alleviate most of these issues. Among this series, electrodes with specific compositions are identified that can reversibly release and uptake ≈0.9 sodium per formula unit via a smooth voltage‐composition profile enlisting minor lattice volume changes upon cycling as opposed to ΔV/V≈23% in the parent NaNi0.5Mn0.5O2 while showing a greater resistance against moisture. The positive attributes of substitution are rationalized by structure considerations supported by density functional theory (DFT) calculations. Electrodes with sustained capacities of ≈180 mAh g−1 are successfully implemented into 18 650 Na‐ion cells having greater performances, energy density‐wise (≈250 Wh L−1), than today's Na3V2(PO4)2F3/HC Na‐ion technology which excels in rate capabilities. These results constitute a step forward in increasing the practicality of Na‐ion technology with additional opportunities for applications in which energy density prevails over rate capability. A co‐substitution strategy to reach the theoretical capacity of layered O3 NaNi0.5Mn0.5O2 with long term cycling performance is explored. The derived NaNi0.5−yCuyMn0.5−zTizO2 material in 18 650 prototype cells with hard carbon (HC) negative electrodes exhibit a cell level specific energy of ≈110 Wh kg−1 that is comparable to the present day Na‐ion technology with poly‐anionic Na3V2(PO4)2F3/HC cells (105–110 Wh kg−1).</description><subject>18 650 prototype cells</subject><subject>air stability</subject><subject>Alternative energy sources</subject><subject>Composition</subject><subject>Copper</subject><subject>Density functional theory</subject><subject>Electrodes</subject><subject>Energy limitation</subject><subject>Flux density</subject><subject>high energy</subject><subject>Manganese</subject><subject>Moisture resistance</subject><subject>Nickel</subject><subject>O3‐type layered oxides</subject><subject>Phase transitions</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><subject>sodium‐ion batteries</subject><subject>Substitution reactions</subject><subject>Titanium</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKw0AUhgdRsNRuXQ-4bp1bkpllaeMF0ha0rodJctJOTSc1mSjZ-Qg-o09iSqVncS7wc_6fD6FbSiaUEHZvwO0njFBFaCSDCzSgIRXjUApyed45u0ajptmRvoSihPMBen8Bk22t22C_BRw7qDcdnoNrrO9wYvfW46rAiemghhyv-O_3z9IsLZkEC9e3FcNxCZmvqxwa_GkNnremxLMWG5fjtcWvbdp461tvK3eDrgpTNjD6n0P09hCvZ0_jZPX4PJsm4w3vs_dBIaciD0iuUqlSJnjIZKAISCmBZLIoAsMEZGlaZDQMs4hEIJVKAxrKgoUpH6K7099DXX200Hi9q9ra9ZaaMRURJmkkepU6qb5sCZ0-1HZv6k5Too9A9RGoPgPV03i5OF_8D695aqs</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Wang, Qing</creator><creator>Mariyappan, Sathiya</creator><creator>Vergnet, Jean</creator><creator>Abakumov, Artem M.</creator><creator>Rousse, Gwenaëlle</creator><creator>Rabuel, François</creator><creator>Chakir, Mohamed</creator><creator>Tarascon, Jean‐Marie</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7059-6845</orcidid><orcidid>https://orcid.org/0000-0003-2851-5906</orcidid><orcidid>https://orcid.org/0000-0001-6137-6923</orcidid><orcidid>https://orcid.org/0000-0002-7135-4629</orcidid><orcidid>https://orcid.org/0000-0003-2131-5960</orcidid><orcidid>https://orcid.org/0000-0001-8877-0015</orcidid><orcidid>https://orcid.org/0000-0001-8030-9187</orcidid></search><sort><creationdate>20190901</creationdate><title>Reaching the Energy Density Limit of Layered O3‐NaNi0.5Mn0.5O2 Electrodes via Dual Cu and Ti Substitution</title><author>Wang, Qing ; Mariyappan, Sathiya ; Vergnet, Jean ; Abakumov, Artem M. ; Rousse, Gwenaëlle ; Rabuel, François ; Chakir, Mohamed ; Tarascon, Jean‐Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3785-68ed14d50d9b89b243628590e888e0c8ff5a24ecbbfc166c707e899b5168f26b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>18 650 prototype cells</topic><topic>air stability</topic><topic>Alternative energy sources</topic><topic>Composition</topic><topic>Copper</topic><topic>Density functional theory</topic><topic>Electrodes</topic><topic>Energy limitation</topic><topic>Flux density</topic><topic>high energy</topic><topic>Manganese</topic><topic>Moisture resistance</topic><topic>Nickel</topic><topic>O3‐type layered oxides</topic><topic>Phase transitions</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><topic>sodium‐ion batteries</topic><topic>Substitution reactions</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Mariyappan, Sathiya</creatorcontrib><creatorcontrib>Vergnet, Jean</creatorcontrib><creatorcontrib>Abakumov, Artem M.</creatorcontrib><creatorcontrib>Rousse, Gwenaëlle</creatorcontrib><creatorcontrib>Rabuel, François</creatorcontrib><creatorcontrib>Chakir, Mohamed</creatorcontrib><creatorcontrib>Tarascon, Jean‐Marie</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qing</au><au>Mariyappan, Sathiya</au><au>Vergnet, Jean</au><au>Abakumov, Artem M.</au><au>Rousse, Gwenaëlle</au><au>Rabuel, François</au><au>Chakir, Mohamed</au><au>Tarascon, Jean‐Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaching the Energy Density Limit of Layered O3‐NaNi0.5Mn0.5O2 Electrodes via Dual Cu and Ti Substitution</atitle><jtitle>Advanced energy materials</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>9</volume><issue>36</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Although being less competitive energy density‐wise, Na‐ion batteries are serious alternatives to Li‐ion ones for applications where cost and sustainability dominate. O3‐type sodium layered oxides could partially overcome the energy limitation, but their practical use is plagued by a reaction process that enlists numerous phase changes and volume variations while additionally being moisture sensitive. Here, it is shown that the double substitution of Ti for Mn and Cu for Ni in O3‐NaNi0.5−yCuyMn0.5− zTizO2 can alleviate most of these issues. Among this series, electrodes with specific compositions are identified that can reversibly release and uptake ≈0.9 sodium per formula unit via a smooth voltage‐composition profile enlisting minor lattice volume changes upon cycling as opposed to ΔV/V≈23% in the parent NaNi0.5Mn0.5O2 while showing a greater resistance against moisture. The positive attributes of substitution are rationalized by structure considerations supported by density functional theory (DFT) calculations. Electrodes with sustained capacities of ≈180 mAh g−1 are successfully implemented into 18 650 Na‐ion cells having greater performances, energy density‐wise (≈250 Wh L−1), than today's Na3V2(PO4)2F3/HC Na‐ion technology which excels in rate capabilities. These results constitute a step forward in increasing the practicality of Na‐ion technology with additional opportunities for applications in which energy density prevails over rate capability. A co‐substitution strategy to reach the theoretical capacity of layered O3 NaNi0.5Mn0.5O2 with long term cycling performance is explored. The derived NaNi0.5−yCuyMn0.5−zTizO2 material in 18 650 prototype cells with hard carbon (HC) negative electrodes exhibit a cell level specific energy of ≈110 Wh kg−1 that is comparable to the present day Na‐ion technology with poly‐anionic Na3V2(PO4)2F3/HC cells (105–110 Wh kg−1).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201901785</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7059-6845</orcidid><orcidid>https://orcid.org/0000-0003-2851-5906</orcidid><orcidid>https://orcid.org/0000-0001-6137-6923</orcidid><orcidid>https://orcid.org/0000-0002-7135-4629</orcidid><orcidid>https://orcid.org/0000-0003-2131-5960</orcidid><orcidid>https://orcid.org/0000-0001-8877-0015</orcidid><orcidid>https://orcid.org/0000-0001-8030-9187</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2019-09, Vol.9 (36), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2297028174
source Access via Wiley Online Library
subjects 18 650 prototype cells
air stability
Alternative energy sources
Composition
Copper
Density functional theory
Electrodes
Energy limitation
Flux density
high energy
Manganese
Moisture resistance
Nickel
O3‐type layered oxides
Phase transitions
Rechargeable batteries
Sodium
sodium‐ion batteries
Substitution reactions
Titanium
title Reaching the Energy Density Limit of Layered O3‐NaNi0.5Mn0.5O2 Electrodes via Dual Cu and Ti Substitution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaching%20the%20Energy%20Density%20Limit%20of%20Layered%20O3%E2%80%90NaNi0.5Mn0.5O2%20Electrodes%20via%20Dual%20Cu%20and%20Ti%20Substitution&rft.jtitle=Advanced%20energy%20materials&rft.au=Wang,%20Qing&rft.date=2019-09-01&rft.volume=9&rft.issue=36&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201901785&rft_dat=%3Cproquest_wiley%3E2297028174%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2297028174&rft_id=info:pmid/&rfr_iscdi=true