Designing software for producibility
This article addresses the questions, what is software design quality and how can measurement help to improve it? There are two principal quality factors: traceability and producibility. The former is the usual notion of software quality as conformance to require0ments. The latter relates to the dif...
Gespeichert in:
Veröffentlicht in: | The Journal of systems and software 1992-03, Vol.17 (3), p.219-225 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 225 |
---|---|
container_issue | 3 |
container_start_page | 219 |
container_title | The Journal of systems and software |
container_volume | 17 |
creator | Card, David N. |
description | This article addresses the questions, what is software design quality and how can measurement help to improve it? There are two principal quality factors: traceability and producibility. The former is the usual notion of software quality as conformance to require0ments. The latter relates to the difficulty of implementing the proposed design. Poor producibility means increased probability of error, lower productivity, and higher maintenance costs during the rest of the product's life cycle. Measurement can help to improve design quality in several ways. It establishes a basis for evaluating design practices and guiding design process improvements. Specifically, measuring complexity provides criteria for making decisions about design alternatives that maximize producibility. This concept of quality and the applications for measurement to software design are illustrated with data from actual projects. |
doi_str_mv | 10.1016/0164-1212(92)90110-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_229661248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0164121292901106</els_id><sourcerecordid>1188000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-f60a3cd0ab3a44c4771fe85c79ba56791acc36d938f7d29d17530c5aec058d933</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wEORHvSwmkl2k81FkPoJBS96DukkKSl1tya7Sv-9WVp6FGYYGJ6Zd94h5BLoLVAQdznLAhiwa8VuFAWghTgiI6glz21WH5PRATklZymtKKWSUTYi00eXwrIJzXKSWt_9mugmvo2TTWxtj2ER1qHbnpMTb9bJXezrmHw-P33MXov5-8vb7GFeIBe0K7yghqOlZsFNWWIpJXhXVyjVwlRCKjCYQat47aVlyoKsOMXKOKRVndt8TK52e7P6d-9Sp1dtH5ssqRlTQgAr6wyVOwhjm1J0Xm9i-DJxq4Hq4R168KoHr1rlGN6hRR6b7nebhGbto2kwpMNslQ8EOZxwv8Nc9vkTXNQJg2vQ2RAddtq24X-dPyEmcZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229661248</pqid></control><display><type>article</type><title>Designing software for producibility</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Card, David N.</creator><creatorcontrib>Card, David N.</creatorcontrib><description>This article addresses the questions, what is software design quality and how can measurement help to improve it? There are two principal quality factors: traceability and producibility. The former is the usual notion of software quality as conformance to require0ments. The latter relates to the difficulty of implementing the proposed design. Poor producibility means increased probability of error, lower productivity, and higher maintenance costs during the rest of the product's life cycle. Measurement can help to improve design quality in several ways. It establishes a basis for evaluating design practices and guiding design process improvements. Specifically, measuring complexity provides criteria for making decisions about design alternatives that maximize producibility. This concept of quality and the applications for measurement to software design are illustrated with data from actual projects.</description><identifier>ISSN: 0164-1212</identifier><identifier>EISSN: 1873-1228</identifier><identifier>DOI: 10.1016/0164-1212(92)90110-6</identifier><identifier>CODEN: JSSODM</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Heuristic ; Mathematical models ; Requirements ; Software ; Software engineering ; Software quality ; Systems design</subject><ispartof>The Journal of systems and software, 1992-03, Vol.17 (3), p.219-225</ispartof><rights>1992</rights><rights>1992 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Mar 1992</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-f60a3cd0ab3a44c4771fe85c79ba56791acc36d938f7d29d17530c5aec058d933</citedby><cites>FETCH-LOGICAL-c360t-f60a3cd0ab3a44c4771fe85c79ba56791acc36d938f7d29d17530c5aec058d933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0164-1212(92)90110-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5567173$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Card, David N.</creatorcontrib><title>Designing software for producibility</title><title>The Journal of systems and software</title><description>This article addresses the questions, what is software design quality and how can measurement help to improve it? There are two principal quality factors: traceability and producibility. The former is the usual notion of software quality as conformance to require0ments. The latter relates to the difficulty of implementing the proposed design. Poor producibility means increased probability of error, lower productivity, and higher maintenance costs during the rest of the product's life cycle. Measurement can help to improve design quality in several ways. It establishes a basis for evaluating design practices and guiding design process improvements. Specifically, measuring complexity provides criteria for making decisions about design alternatives that maximize producibility. This concept of quality and the applications for measurement to software design are illustrated with data from actual projects.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Heuristic</subject><subject>Mathematical models</subject><subject>Requirements</subject><subject>Software</subject><subject>Software engineering</subject><subject>Software quality</subject><subject>Systems design</subject><issn>0164-1212</issn><issn>1873-1228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wEORHvSwmkl2k81FkPoJBS96DukkKSl1tya7Sv-9WVp6FGYYGJ6Zd94h5BLoLVAQdznLAhiwa8VuFAWghTgiI6glz21WH5PRATklZymtKKWSUTYi00eXwrIJzXKSWt_9mugmvo2TTWxtj2ER1qHbnpMTb9bJXezrmHw-P33MXov5-8vb7GFeIBe0K7yghqOlZsFNWWIpJXhXVyjVwlRCKjCYQat47aVlyoKsOMXKOKRVndt8TK52e7P6d-9Sp1dtH5ssqRlTQgAr6wyVOwhjm1J0Xm9i-DJxq4Hq4R168KoHr1rlGN6hRR6b7nebhGbto2kwpMNslQ8EOZxwv8Nc9vkTXNQJg2vQ2RAddtq24X-dPyEmcZA</recordid><startdate>19920301</startdate><enddate>19920301</enddate><creator>Card, David N.</creator><general>Elsevier Inc</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19920301</creationdate><title>Designing software for producibility</title><author>Card, David N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-f60a3cd0ab3a44c4771fe85c79ba56791acc36d938f7d29d17530c5aec058d933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Heuristic</topic><topic>Mathematical models</topic><topic>Requirements</topic><topic>Software</topic><topic>Software engineering</topic><topic>Software quality</topic><topic>Systems design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Card, David N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The Journal of systems and software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Card, David N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing software for producibility</atitle><jtitle>The Journal of systems and software</jtitle><date>1992-03-01</date><risdate>1992</risdate><volume>17</volume><issue>3</issue><spage>219</spage><epage>225</epage><pages>219-225</pages><issn>0164-1212</issn><eissn>1873-1228</eissn><coden>JSSODM</coden><abstract>This article addresses the questions, what is software design quality and how can measurement help to improve it? There are two principal quality factors: traceability and producibility. The former is the usual notion of software quality as conformance to require0ments. The latter relates to the difficulty of implementing the proposed design. Poor producibility means increased probability of error, lower productivity, and higher maintenance costs during the rest of the product's life cycle. Measurement can help to improve design quality in several ways. It establishes a basis for evaluating design practices and guiding design process improvements. Specifically, measuring complexity provides criteria for making decisions about design alternatives that maximize producibility. This concept of quality and the applications for measurement to software design are illustrated with data from actual projects.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/0164-1212(92)90110-6</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0164-1212 |
ispartof | The Journal of systems and software, 1992-03, Vol.17 (3), p.219-225 |
issn | 0164-1212 1873-1228 |
language | eng |
recordid | cdi_proquest_journals_229661248 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Heuristic Mathematical models Requirements Software Software engineering Software quality Systems design |
title | Designing software for producibility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A43%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20software%20for%20producibility&rft.jtitle=The%20Journal%20of%20systems%20and%20software&rft.au=Card,%20David%20N.&rft.date=1992-03-01&rft.volume=17&rft.issue=3&rft.spage=219&rft.epage=225&rft.pages=219-225&rft.issn=0164-1212&rft.eissn=1873-1228&rft.coden=JSSODM&rft_id=info:doi/10.1016/0164-1212(92)90110-6&rft_dat=%3Cproquest_cross%3E1188000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=229661248&rft_id=info:pmid/&rft_els_id=0164121292901106&rfr_iscdi=true |