Core–shell g-C3N4/Pt/TiO2 nanowires for simultaneous photocatalytic H2 evolution and RhB degradation under visible light irradiation
Core–shell g-C3N4/Pt/TiO2 nanowire structures were successfully synthesized through a facile two-step synthetic methodology, involving photodepositing Pt nanoparticles on the surface of TiO2 nanowires and subsequent growth of g-C3N4 (CN) layers via thermal evaporation of urea. The as-prepared CN/Pt/...
Gespeichert in:
Veröffentlicht in: | Catalysis science & technology 2019-01, Vol.9 (18), p.4898-4908 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4908 |
---|---|
container_issue | 18 |
container_start_page | 4898 |
container_title | Catalysis science & technology |
container_volume | 9 |
creator | Dou, Hailong Qin, Yumei Pan, Feng Long, Dan Rao, Xi Guo Qin Xu Zhang, Yongping |
description | Core–shell g-C3N4/Pt/TiO2 nanowire structures were successfully synthesized through a facile two-step synthetic methodology, involving photodepositing Pt nanoparticles on the surface of TiO2 nanowires and subsequent growth of g-C3N4 (CN) layers via thermal evaporation of urea. The as-prepared CN/Pt/TiO2 composites show a higher photocurrent density compared to CN/TiO2. The CN/Pt/TiO2 photocatalysts exhibit an enhanced H2 evolution rate of 8.93 μmol h−1 under visible light irradiation, which is 1.25 times higher than that of CN/TiO2 (7.15 μmol h−1), while Pt/TiO2 and TiO2 nanowires do not show any visible light responses. Our experiments demonstrate for the first time that CN/Pt/TiO2 with a unique core–shell nanowire structure of semiconductor–metal–semiconductor enables concurrent hydrogen evolution through photo-induced water splitting and RhB degradation by photo-oxidation in the visible range. This result is probably attributable to the formation of a heterojunction and the Pt nanoclusters in CN/Pt/TiO2, facilitating the electron transfer from the LUMO of g-C3N4 to that of TiO2 and generating different active sites upon photo-absorption in the CN layers. Our work provides a feasible way to obtain H2 while treating sewage using photocatalysis. |
doi_str_mv | 10.1039/c9cy01086f |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2296538947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2296538947</sourcerecordid><originalsourceid>FETCH-LOGICAL-g135t-9411099bc6c1406eb0c0153024328e25ba3e3ba3b75bf5f3aa19f80444f4dc6a3</originalsourceid><addsrcrecordid>eNo9T81KAzEYDKJgqb34BAHPa_O73Rx1USsUK1LPJZvN7qbEpCbZSm89-QK-oU_iUsXv8M3wzTDDB8AlRtcYUTFVQu0RRkXenIARQYxlbJbj03_O6TmYxLhBwzAxGMkIfJY-6O_DV-y0tbDNSvrEps9pujJLAp10_sMEHWHjA4zmrbdJOu37CLedT17JJO0-GQXnBOqdt30y3kHpavjS3cJat0HW8njrXa0D3JloKquhNW2XoAmDbI76BThrpI168odj8Hp_tyrn2WL58FjeLLIWU54ywTBGQlQqV5ihXFdIIcwpIoySQhNeSarpsKoZrxreUCmxaIrhe9awWuWSjsHVb-42-Pdex7Te-D64oXJNiMg5LQSb0R_3N2Vo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296538947</pqid></control><display><type>article</type><title>Core–shell g-C3N4/Pt/TiO2 nanowires for simultaneous photocatalytic H2 evolution and RhB degradation under visible light irradiation</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Dou, Hailong ; Qin, Yumei ; Pan, Feng ; Long, Dan ; Rao, Xi ; Guo Qin Xu ; Zhang, Yongping</creator><creatorcontrib>Dou, Hailong ; Qin, Yumei ; Pan, Feng ; Long, Dan ; Rao, Xi ; Guo Qin Xu ; Zhang, Yongping</creatorcontrib><description>Core–shell g-C3N4/Pt/TiO2 nanowire structures were successfully synthesized through a facile two-step synthetic methodology, involving photodepositing Pt nanoparticles on the surface of TiO2 nanowires and subsequent growth of g-C3N4 (CN) layers via thermal evaporation of urea. The as-prepared CN/Pt/TiO2 composites show a higher photocurrent density compared to CN/TiO2. The CN/Pt/TiO2 photocatalysts exhibit an enhanced H2 evolution rate of 8.93 μmol h−1 under visible light irradiation, which is 1.25 times higher than that of CN/TiO2 (7.15 μmol h−1), while Pt/TiO2 and TiO2 nanowires do not show any visible light responses. Our experiments demonstrate for the first time that CN/Pt/TiO2 with a unique core–shell nanowire structure of semiconductor–metal–semiconductor enables concurrent hydrogen evolution through photo-induced water splitting and RhB degradation by photo-oxidation in the visible range. This result is probably attributable to the formation of a heterojunction and the Pt nanoclusters in CN/Pt/TiO2, facilitating the electron transfer from the LUMO of g-C3N4 to that of TiO2 and generating different active sites upon photo-absorption in the CN layers. Our work provides a feasible way to obtain H2 while treating sewage using photocatalysis.</description><identifier>ISSN: 2044-4753</identifier><identifier>EISSN: 2044-4761</identifier><identifier>DOI: 10.1039/c9cy01086f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carbon nitride ; Electron transfer ; Heterojunctions ; Hydrogen evolution ; Light irradiation ; Nanoparticles ; Nanowires ; Oxidation ; Photocatalysis ; Photodegradation ; Photoelectric effect ; Photoelectric emission ; Titanium dioxide ; Water splitting</subject><ispartof>Catalysis science & technology, 2019-01, Vol.9 (18), p.4898-4908</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dou, Hailong</creatorcontrib><creatorcontrib>Qin, Yumei</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Long, Dan</creatorcontrib><creatorcontrib>Rao, Xi</creatorcontrib><creatorcontrib>Guo Qin Xu</creatorcontrib><creatorcontrib>Zhang, Yongping</creatorcontrib><title>Core–shell g-C3N4/Pt/TiO2 nanowires for simultaneous photocatalytic H2 evolution and RhB degradation under visible light irradiation</title><title>Catalysis science & technology</title><description>Core–shell g-C3N4/Pt/TiO2 nanowire structures were successfully synthesized through a facile two-step synthetic methodology, involving photodepositing Pt nanoparticles on the surface of TiO2 nanowires and subsequent growth of g-C3N4 (CN) layers via thermal evaporation of urea. The as-prepared CN/Pt/TiO2 composites show a higher photocurrent density compared to CN/TiO2. The CN/Pt/TiO2 photocatalysts exhibit an enhanced H2 evolution rate of 8.93 μmol h−1 under visible light irradiation, which is 1.25 times higher than that of CN/TiO2 (7.15 μmol h−1), while Pt/TiO2 and TiO2 nanowires do not show any visible light responses. Our experiments demonstrate for the first time that CN/Pt/TiO2 with a unique core–shell nanowire structure of semiconductor–metal–semiconductor enables concurrent hydrogen evolution through photo-induced water splitting and RhB degradation by photo-oxidation in the visible range. This result is probably attributable to the formation of a heterojunction and the Pt nanoclusters in CN/Pt/TiO2, facilitating the electron transfer from the LUMO of g-C3N4 to that of TiO2 and generating different active sites upon photo-absorption in the CN layers. Our work provides a feasible way to obtain H2 while treating sewage using photocatalysis.</description><subject>Carbon nitride</subject><subject>Electron transfer</subject><subject>Heterojunctions</subject><subject>Hydrogen evolution</subject><subject>Light irradiation</subject><subject>Nanoparticles</subject><subject>Nanowires</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Photodegradation</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Titanium dioxide</subject><subject>Water splitting</subject><issn>2044-4753</issn><issn>2044-4761</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9T81KAzEYDKJgqb34BAHPa_O73Rx1USsUK1LPJZvN7qbEpCbZSm89-QK-oU_iUsXv8M3wzTDDB8AlRtcYUTFVQu0RRkXenIARQYxlbJbj03_O6TmYxLhBwzAxGMkIfJY-6O_DV-y0tbDNSvrEps9pujJLAp10_sMEHWHjA4zmrbdJOu37CLedT17JJO0-GQXnBOqdt30y3kHpavjS3cJat0HW8njrXa0D3JloKquhNW2XoAmDbI76BThrpI168odj8Hp_tyrn2WL58FjeLLIWU54ywTBGQlQqV5ihXFdIIcwpIoySQhNeSarpsKoZrxreUCmxaIrhe9awWuWSjsHVb-42-Pdex7Te-D64oXJNiMg5LQSb0R_3N2Vo</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Dou, Hailong</creator><creator>Qin, Yumei</creator><creator>Pan, Feng</creator><creator>Long, Dan</creator><creator>Rao, Xi</creator><creator>Guo Qin Xu</creator><creator>Zhang, Yongping</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190101</creationdate><title>Core–shell g-C3N4/Pt/TiO2 nanowires for simultaneous photocatalytic H2 evolution and RhB degradation under visible light irradiation</title><author>Dou, Hailong ; Qin, Yumei ; Pan, Feng ; Long, Dan ; Rao, Xi ; Guo Qin Xu ; Zhang, Yongping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g135t-9411099bc6c1406eb0c0153024328e25ba3e3ba3b75bf5f3aa19f80444f4dc6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon nitride</topic><topic>Electron transfer</topic><topic>Heterojunctions</topic><topic>Hydrogen evolution</topic><topic>Light irradiation</topic><topic>Nanoparticles</topic><topic>Nanowires</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Photodegradation</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Titanium dioxide</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dou, Hailong</creatorcontrib><creatorcontrib>Qin, Yumei</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Long, Dan</creatorcontrib><creatorcontrib>Rao, Xi</creatorcontrib><creatorcontrib>Guo Qin Xu</creatorcontrib><creatorcontrib>Zhang, Yongping</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Catalysis science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dou, Hailong</au><au>Qin, Yumei</au><au>Pan, Feng</au><au>Long, Dan</au><au>Rao, Xi</au><au>Guo Qin Xu</au><au>Zhang, Yongping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Core–shell g-C3N4/Pt/TiO2 nanowires for simultaneous photocatalytic H2 evolution and RhB degradation under visible light irradiation</atitle><jtitle>Catalysis science & technology</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>9</volume><issue>18</issue><spage>4898</spage><epage>4908</epage><pages>4898-4908</pages><issn>2044-4753</issn><eissn>2044-4761</eissn><abstract>Core–shell g-C3N4/Pt/TiO2 nanowire structures were successfully synthesized through a facile two-step synthetic methodology, involving photodepositing Pt nanoparticles on the surface of TiO2 nanowires and subsequent growth of g-C3N4 (CN) layers via thermal evaporation of urea. The as-prepared CN/Pt/TiO2 composites show a higher photocurrent density compared to CN/TiO2. The CN/Pt/TiO2 photocatalysts exhibit an enhanced H2 evolution rate of 8.93 μmol h−1 under visible light irradiation, which is 1.25 times higher than that of CN/TiO2 (7.15 μmol h−1), while Pt/TiO2 and TiO2 nanowires do not show any visible light responses. Our experiments demonstrate for the first time that CN/Pt/TiO2 with a unique core–shell nanowire structure of semiconductor–metal–semiconductor enables concurrent hydrogen evolution through photo-induced water splitting and RhB degradation by photo-oxidation in the visible range. This result is probably attributable to the formation of a heterojunction and the Pt nanoclusters in CN/Pt/TiO2, facilitating the electron transfer from the LUMO of g-C3N4 to that of TiO2 and generating different active sites upon photo-absorption in the CN layers. Our work provides a feasible way to obtain H2 while treating sewage using photocatalysis.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cy01086f</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2044-4753 |
ispartof | Catalysis science & technology, 2019-01, Vol.9 (18), p.4898-4908 |
issn | 2044-4753 2044-4761 |
language | eng |
recordid | cdi_proquest_journals_2296538947 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Carbon nitride Electron transfer Heterojunctions Hydrogen evolution Light irradiation Nanoparticles Nanowires Oxidation Photocatalysis Photodegradation Photoelectric effect Photoelectric emission Titanium dioxide Water splitting |
title | Core–shell g-C3N4/Pt/TiO2 nanowires for simultaneous photocatalytic H2 evolution and RhB degradation under visible light irradiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Core%E2%80%93shell%20g-C3N4/Pt/TiO2%20nanowires%20for%20simultaneous%20photocatalytic%20H2%20evolution%20and%20RhB%20degradation%20under%20visible%20light%20irradiation&rft.jtitle=Catalysis%20science%20&%20technology&rft.au=Dou,%20Hailong&rft.date=2019-01-01&rft.volume=9&rft.issue=18&rft.spage=4898&rft.epage=4908&rft.pages=4898-4908&rft.issn=2044-4753&rft.eissn=2044-4761&rft_id=info:doi/10.1039/c9cy01086f&rft_dat=%3Cproquest%3E2296538947%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296538947&rft_id=info:pmid/&rfr_iscdi=true |