Simple and fast approximations for generalized stochastic Petri nets

A primary problem with generalized stochastic Petri nets (GSPNs) is the exponential explosion in the number of reachable states. This limits the GSPN modeling capability. We present an algorithm that circumvents the problem by not enumerating the entire state space to find a solution. Instead, it co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of systems and software 1993-05, Vol.21 (2), p.163-177
Hauptverfasser: von Mayrhauser, A., Dube, Deepak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 2
container_start_page 163
container_title The Journal of systems and software
container_volume 21
creator von Mayrhauser, A.
Dube, Deepak
description A primary problem with generalized stochastic Petri nets (GSPNs) is the exponential explosion in the number of reachable states. This limits the GSPN modeling capability. We present an algorithm that circumvents the problem by not enumerating the entire state space to find a solution. Instead, it considers token flow balance and the preferred cycle heuristic to reduce the number of reachable states by an order of magnitude. This provides fast approximations of performance measures of systems modeled as GSPNs. Comparisons show how accurate the approximations are. We also give criteria that help system modelers ensure high approximation accuracy.
doi_str_mv 10.1016/0164-1212(93)90039-Z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_229632966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016412129390039Z</els_id><sourcerecordid>1188114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-1af9a5228423ca8e97482a8bbd0229ff45c6194a5bc8b427794142d49c16c6f63</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw9BPOihmq9tm4sg6ycsKKiXvYQ0nWiWbluTrKi_3tSVPXoYBoZn3nnnReiQkjNKaH6eSmSUUXYi-akkhMtsvoVGtCx4GrNyG402yC7aC2FBCCkYYSN09eSWfQNYtzW2OkSs-953n26po-vagG3n8Su04HXjvqHGIXbmLXHO4EeI3uEWYthHO1Y3AQ7--hi93Fw_T--y2cPt_fRylhlOZMyotlJPkh_BuNElyEKUTJdVVRPGpLViYnIqhZ5UpqwEKwopqGC1kIbmJrc5H6OjtW6y-L6CENWiW_k2nVRJIOepBkisIeO7EDxY1fv0jv9SlKghLjVkoYYslOTqNy41T2vHf9o6GN1Yr1vjwmZXFDkrpUzYxRqD9OeHA6-CcdAaqJ0HE1Xduf_v_ADzlX12</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229632966</pqid></control><display><type>article</type><title>Simple and fast approximations for generalized stochastic Petri nets</title><source>Elsevier ScienceDirect Journals Complete</source><creator>von Mayrhauser, A. ; Dube, Deepak</creator><creatorcontrib>von Mayrhauser, A. ; Dube, Deepak</creatorcontrib><description>A primary problem with generalized stochastic Petri nets (GSPNs) is the exponential explosion in the number of reachable states. This limits the GSPN modeling capability. We present an algorithm that circumvents the problem by not enumerating the entire state space to find a solution. Instead, it considers token flow balance and the preferred cycle heuristic to reduce the number of reachable states by an order of magnitude. This provides fast approximations of performance measures of systems modeled as GSPNs. Comparisons show how accurate the approximations are. We also give criteria that help system modelers ensure high approximation accuracy.</description><identifier>ISSN: 0164-1212</identifier><identifier>EISSN: 1873-1228</identifier><identifier>DOI: 10.1016/0164-1212(93)90039-Z</identifier><identifier>CODEN: JSSODM</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Algorithms ; Applied sciences ; Approximation ; Computer programming ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Modelling and identification ; Stochastic models ; Studies ; Systems development</subject><ispartof>The Journal of systems and software, 1993-05, Vol.21 (2), p.163-177</ispartof><rights>1993</rights><rights>1993 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. May 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-1af9a5228423ca8e97482a8bbd0229ff45c6194a5bc8b427794142d49c16c6f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0164-1212(93)90039-Z$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4762899$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>von Mayrhauser, A.</creatorcontrib><creatorcontrib>Dube, Deepak</creatorcontrib><title>Simple and fast approximations for generalized stochastic Petri nets</title><title>The Journal of systems and software</title><description>A primary problem with generalized stochastic Petri nets (GSPNs) is the exponential explosion in the number of reachable states. This limits the GSPN modeling capability. We present an algorithm that circumvents the problem by not enumerating the entire state space to find a solution. Instead, it considers token flow balance and the preferred cycle heuristic to reduce the number of reachable states by an order of magnitude. This provides fast approximations of performance measures of systems modeled as GSPNs. Comparisons show how accurate the approximations are. We also give criteria that help system modelers ensure high approximation accuracy.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Computer programming</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Modelling and identification</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Systems development</subject><issn>0164-1212</issn><issn>1873-1228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw9BPOihmq9tm4sg6ycsKKiXvYQ0nWiWbluTrKi_3tSVPXoYBoZn3nnnReiQkjNKaH6eSmSUUXYi-akkhMtsvoVGtCx4GrNyG402yC7aC2FBCCkYYSN09eSWfQNYtzW2OkSs-953n26po-vagG3n8Su04HXjvqHGIXbmLXHO4EeI3uEWYthHO1Y3AQ7--hi93Fw_T--y2cPt_fRylhlOZMyotlJPkh_BuNElyEKUTJdVVRPGpLViYnIqhZ5UpqwEKwopqGC1kIbmJrc5H6OjtW6y-L6CENWiW_k2nVRJIOepBkisIeO7EDxY1fv0jv9SlKghLjVkoYYslOTqNy41T2vHf9o6GN1Yr1vjwmZXFDkrpUzYxRqD9OeHA6-CcdAaqJ0HE1Xduf_v_ADzlX12</recordid><startdate>19930501</startdate><enddate>19930501</enddate><creator>von Mayrhauser, A.</creator><creator>Dube, Deepak</creator><general>Elsevier Inc</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19930501</creationdate><title>Simple and fast approximations for generalized stochastic Petri nets</title><author>von Mayrhauser, A. ; Dube, Deepak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-1af9a5228423ca8e97482a8bbd0229ff45c6194a5bc8b427794142d49c16c6f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Computer programming</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Modelling and identification</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Systems development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Mayrhauser, A.</creatorcontrib><creatorcontrib>Dube, Deepak</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The Journal of systems and software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>von Mayrhauser, A.</au><au>Dube, Deepak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple and fast approximations for generalized stochastic Petri nets</atitle><jtitle>The Journal of systems and software</jtitle><date>1993-05-01</date><risdate>1993</risdate><volume>21</volume><issue>2</issue><spage>163</spage><epage>177</epage><pages>163-177</pages><issn>0164-1212</issn><eissn>1873-1228</eissn><coden>JSSODM</coden><abstract>A primary problem with generalized stochastic Petri nets (GSPNs) is the exponential explosion in the number of reachable states. This limits the GSPN modeling capability. We present an algorithm that circumvents the problem by not enumerating the entire state space to find a solution. Instead, it considers token flow balance and the preferred cycle heuristic to reduce the number of reachable states by an order of magnitude. This provides fast approximations of performance measures of systems modeled as GSPNs. Comparisons show how accurate the approximations are. We also give criteria that help system modelers ensure high approximation accuracy.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/0164-1212(93)90039-Z</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0164-1212
ispartof The Journal of systems and software, 1993-05, Vol.21 (2), p.163-177
issn 0164-1212
1873-1228
language eng
recordid cdi_proquest_journals_229632966
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Applied sciences
Approximation
Computer programming
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Modelling and identification
Stochastic models
Studies
Systems development
title Simple and fast approximations for generalized stochastic Petri nets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20and%20fast%20approximations%20for%20generalized%20stochastic%20Petri%20nets&rft.jtitle=The%20Journal%20of%20systems%20and%20software&rft.au=von%20Mayrhauser,%20A.&rft.date=1993-05-01&rft.volume=21&rft.issue=2&rft.spage=163&rft.epage=177&rft.pages=163-177&rft.issn=0164-1212&rft.eissn=1873-1228&rft.coden=JSSODM&rft_id=info:doi/10.1016/0164-1212(93)90039-Z&rft_dat=%3Cproquest_cross%3E1188114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=229632966&rft_id=info:pmid/&rft_els_id=016412129390039Z&rfr_iscdi=true