Simple and fast approximations for generalized stochastic Petri nets
A primary problem with generalized stochastic Petri nets (GSPNs) is the exponential explosion in the number of reachable states. This limits the GSPN modeling capability. We present an algorithm that circumvents the problem by not enumerating the entire state space to find a solution. Instead, it co...
Gespeichert in:
Veröffentlicht in: | The Journal of systems and software 1993-05, Vol.21 (2), p.163-177 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | 2 |
container_start_page | 163 |
container_title | The Journal of systems and software |
container_volume | 21 |
creator | von Mayrhauser, A. Dube, Deepak |
description | A primary problem with generalized stochastic Petri nets (GSPNs) is the exponential explosion in the number of reachable states. This limits the GSPN modeling capability. We present an algorithm that circumvents the problem by not enumerating the entire state space to find a solution. Instead, it considers token flow balance and the preferred cycle heuristic to reduce the number of reachable states by an order of magnitude. This provides fast approximations of performance measures of systems modeled as GSPNs. Comparisons show how accurate the approximations are. We also give criteria that help system modelers ensure high approximation accuracy. |
doi_str_mv | 10.1016/0164-1212(93)90039-Z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_229632966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>016412129390039Z</els_id><sourcerecordid>1188114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-1af9a5228423ca8e97482a8bbd0229ff45c6194a5bc8b427794142d49c16c6f63</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw9BPOihmq9tm4sg6ycsKKiXvYQ0nWiWbluTrKi_3tSVPXoYBoZn3nnnReiQkjNKaH6eSmSUUXYi-akkhMtsvoVGtCx4GrNyG402yC7aC2FBCCkYYSN09eSWfQNYtzW2OkSs-953n26po-vagG3n8Su04HXjvqHGIXbmLXHO4EeI3uEWYthHO1Y3AQ7--hi93Fw_T--y2cPt_fRylhlOZMyotlJPkh_BuNElyEKUTJdVVRPGpLViYnIqhZ5UpqwEKwopqGC1kIbmJrc5H6OjtW6y-L6CENWiW_k2nVRJIOepBkisIeO7EDxY1fv0jv9SlKghLjVkoYYslOTqNy41T2vHf9o6GN1Yr1vjwmZXFDkrpUzYxRqD9OeHA6-CcdAaqJ0HE1Xduf_v_ADzlX12</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>229632966</pqid></control><display><type>article</type><title>Simple and fast approximations for generalized stochastic Petri nets</title><source>Elsevier ScienceDirect Journals Complete</source><creator>von Mayrhauser, A. ; Dube, Deepak</creator><creatorcontrib>von Mayrhauser, A. ; Dube, Deepak</creatorcontrib><description>A primary problem with generalized stochastic Petri nets (GSPNs) is the exponential explosion in the number of reachable states. This limits the GSPN modeling capability. We present an algorithm that circumvents the problem by not enumerating the entire state space to find a solution. Instead, it considers token flow balance and the preferred cycle heuristic to reduce the number of reachable states by an order of magnitude. This provides fast approximations of performance measures of systems modeled as GSPNs. Comparisons show how accurate the approximations are. We also give criteria that help system modelers ensure high approximation accuracy.</description><identifier>ISSN: 0164-1212</identifier><identifier>EISSN: 1873-1228</identifier><identifier>DOI: 10.1016/0164-1212(93)90039-Z</identifier><identifier>CODEN: JSSODM</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Algorithms ; Applied sciences ; Approximation ; Computer programming ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Modelling and identification ; Stochastic models ; Studies ; Systems development</subject><ispartof>The Journal of systems and software, 1993-05, Vol.21 (2), p.163-177</ispartof><rights>1993</rights><rights>1993 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. May 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-1af9a5228423ca8e97482a8bbd0229ff45c6194a5bc8b427794142d49c16c6f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0164-1212(93)90039-Z$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4762899$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>von Mayrhauser, A.</creatorcontrib><creatorcontrib>Dube, Deepak</creatorcontrib><title>Simple and fast approximations for generalized stochastic Petri nets</title><title>The Journal of systems and software</title><description>A primary problem with generalized stochastic Petri nets (GSPNs) is the exponential explosion in the number of reachable states. This limits the GSPN modeling capability. We present an algorithm that circumvents the problem by not enumerating the entire state space to find a solution. Instead, it considers token flow balance and the preferred cycle heuristic to reduce the number of reachable states by an order of magnitude. This provides fast approximations of performance measures of systems modeled as GSPNs. Comparisons show how accurate the approximations are. We also give criteria that help system modelers ensure high approximation accuracy.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Computer programming</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Modelling and identification</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Systems development</subject><issn>0164-1212</issn><issn>1873-1228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw9BPOihmq9tm4sg6ycsKKiXvYQ0nWiWbluTrKi_3tSVPXoYBoZn3nnnReiQkjNKaH6eSmSUUXYi-akkhMtsvoVGtCx4GrNyG402yC7aC2FBCCkYYSN09eSWfQNYtzW2OkSs-953n26po-vagG3n8Su04HXjvqHGIXbmLXHO4EeI3uEWYthHO1Y3AQ7--hi93Fw_T--y2cPt_fRylhlOZMyotlJPkh_BuNElyEKUTJdVVRPGpLViYnIqhZ5UpqwEKwopqGC1kIbmJrc5H6OjtW6y-L6CENWiW_k2nVRJIOepBkisIeO7EDxY1fv0jv9SlKghLjVkoYYslOTqNy41T2vHf9o6GN1Yr1vjwmZXFDkrpUzYxRqD9OeHA6-CcdAaqJ0HE1Xduf_v_ADzlX12</recordid><startdate>19930501</startdate><enddate>19930501</enddate><creator>von Mayrhauser, A.</creator><creator>Dube, Deepak</creator><general>Elsevier Inc</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19930501</creationdate><title>Simple and fast approximations for generalized stochastic Petri nets</title><author>von Mayrhauser, A. ; Dube, Deepak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-1af9a5228423ca8e97482a8bbd0229ff45c6194a5bc8b427794142d49c16c6f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Computer programming</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Modelling and identification</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Systems development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Mayrhauser, A.</creatorcontrib><creatorcontrib>Dube, Deepak</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The Journal of systems and software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>von Mayrhauser, A.</au><au>Dube, Deepak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple and fast approximations for generalized stochastic Petri nets</atitle><jtitle>The Journal of systems and software</jtitle><date>1993-05-01</date><risdate>1993</risdate><volume>21</volume><issue>2</issue><spage>163</spage><epage>177</epage><pages>163-177</pages><issn>0164-1212</issn><eissn>1873-1228</eissn><coden>JSSODM</coden><abstract>A primary problem with generalized stochastic Petri nets (GSPNs) is the exponential explosion in the number of reachable states. This limits the GSPN modeling capability. We present an algorithm that circumvents the problem by not enumerating the entire state space to find a solution. Instead, it considers token flow balance and the preferred cycle heuristic to reduce the number of reachable states by an order of magnitude. This provides fast approximations of performance measures of systems modeled as GSPNs. Comparisons show how accurate the approximations are. We also give criteria that help system modelers ensure high approximation accuracy.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/0164-1212(93)90039-Z</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0164-1212 |
ispartof | The Journal of systems and software, 1993-05, Vol.21 (2), p.163-177 |
issn | 0164-1212 1873-1228 |
language | eng |
recordid | cdi_proquest_journals_229632966 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Applied sciences Approximation Computer programming Computer science control theory systems Control theory. Systems Exact sciences and technology Modelling and identification Stochastic models Studies Systems development |
title | Simple and fast approximations for generalized stochastic Petri nets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20and%20fast%20approximations%20for%20generalized%20stochastic%20Petri%20nets&rft.jtitle=The%20Journal%20of%20systems%20and%20software&rft.au=von%20Mayrhauser,%20A.&rft.date=1993-05-01&rft.volume=21&rft.issue=2&rft.spage=163&rft.epage=177&rft.pages=163-177&rft.issn=0164-1212&rft.eissn=1873-1228&rft.coden=JSSODM&rft_id=info:doi/10.1016/0164-1212(93)90039-Z&rft_dat=%3Cproquest_cross%3E1188114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=229632966&rft_id=info:pmid/&rft_els_id=016412129390039Z&rfr_iscdi=true |