What forces drive the dynamic interaction between regional housing prices?

This paper examines the dynamic interaction between regional housing prices in the United States. We use the copula method to explore the dependent distribution of housing prices in ten metropolitan statistical areas (MSAs) in three regions. The results generally show that changes in time-varying co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of strategic property management 2017-09, Vol.21 (3), p.225-239
Hauptverfasser: Wu, Yun-Ling, Lu, Chien-Lin, Chen, Ming-Chi, Chu, Fang-Ni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 3
container_start_page 225
container_title International journal of strategic property management
container_volume 21
creator Wu, Yun-Ling
Lu, Chien-Lin
Chen, Ming-Chi
Chu, Fang-Ni
description This paper examines the dynamic interaction between regional housing prices in the United States. We use the copula method to explore the dependent distribution of housing prices in ten metropolitan statistical areas (MSAs) in three regions. The results generally show that changes in time-varying correlation result from different trends in regional housing prices. We regress housing price dynamic correlation on regional economic variables, finding that the economic co-movement mechanism determines the housing price correlation in the Western and Great Lakes regions, while the migration mechanism drives the housing price correlation in the Eastern region. We also find that economic co-movement is the main force driving the housing price correlation between regions.
doi_str_mv 10.3846/1648715X.2016.1254120
format Article
fullrecord <record><control><sourceid>ceeol_proqu</sourceid><recordid>TN_cdi_proquest_journals_2296155167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A611334667</galeid><ceeol_id>552255</ceeol_id><doaj_id>oai_doaj_org_article_832c34224ea34e0da24dae47b3471f68</doaj_id><sourcerecordid>552255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-2771de391bd98a1886c7e8e545c9f07bb6f12fd164ba7b25eeef18de977f8953</originalsourceid><addsrcrecordid>eNqFUU1v1DAQjRCVKC3_AKRIXNkl_rZPUFVAW1XqpRLcLMceZ73KxsX2ttp_j9Ms5chlPB6992aeXtN8QN2aSMo_I06lQOzXGneIrxFmFOHuVXM6z1cKCfX62M-gN83bnLddRwVW8rS5-bkxpfUxWcitS-ER2rKB1h0mswu2DVOBZGwJcWp7KE8AU5tgqF8ztpu4z2Ea2ocUKvvLeXPizZjh3fE9a-6_f7u_vFrd3v24vry4XVmqaFlhIZADolDvlDRISm4FSGCUWeU70ffcI-xdPbg3oscMADySDpQQXipGzprrRdZFs9V1986kg44m6OdBTIM2qQQ7gpYEW0IxpmAIhc4ZTJ0BKnpCBfJcVq2Pi9ZDir_3kIvexn2q3rLGWHHEGOKioj4tqMFU0X42DbmWHIZNyYPZ56wvOEKEUP4MZwvcpphzAv9yJOr0HJj-G5ieA9PHwCrv68ILU81jZ55iGp0u5jDG5JOZbMia_E_i_XE1QBz_mWEMY8bIH_aEpgI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296155167</pqid></control><display><type>article</type><title>What forces drive the dynamic interaction between regional housing prices?</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Business Source Complete</source><source>Alma/SFX Local Collection</source><creator>Wu, Yun-Ling ; Lu, Chien-Lin ; Chen, Ming-Chi ; Chu, Fang-Ni</creator><creatorcontrib>Wu, Yun-Ling ; Lu, Chien-Lin ; Chen, Ming-Chi ; Chu, Fang-Ni</creatorcontrib><description>This paper examines the dynamic interaction between regional housing prices in the United States. We use the copula method to explore the dependent distribution of housing prices in ten metropolitan statistical areas (MSAs) in three regions. The results generally show that changes in time-varying correlation result from different trends in regional housing prices. We regress housing price dynamic correlation on regional economic variables, finding that the economic co-movement mechanism determines the housing price correlation in the Western and Great Lakes regions, while the migration mechanism drives the housing price correlation in the Eastern region. We also find that economic co-movement is the main force driving the housing price correlation between regions.</description><identifier>ISSN: 1648-715X</identifier><identifier>EISSN: 1648-9179</identifier><identifier>DOI: 10.3846/1648715X.2016.1254120</identifier><language>eng</language><publisher>Vilnius: Vilnius Gediminas Technical University</publisher><subject>Analysis ; Copula model ; Cost of living ; Demography and human biology ; Dynamic correlation ; Economic development ; Housing ; Housing prices ; Marketing / Advertising ; Metropolitan statistical areas ; Micro-Economics ; Migration Studies ; Regional housing prices ; Regions ; Rural and urban sociology</subject><ispartof>International journal of strategic property management, 2017-09, Vol.21 (3), p.225-239</ispartof><rights>2017 Vilnius Gediminas Technical University (VGTU) Press 2017</rights><rights>COPYRIGHT 2017 Vilnius Gediminas Technical University</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-2771de391bd98a1886c7e8e545c9f07bb6f12fd164ba7b25eeef18de977f8953</citedby><cites>FETCH-LOGICAL-c494t-2771de391bd98a1886c7e8e545c9f07bb6f12fd164ba7b25eeef18de977f8953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wu, Yun-Ling</creatorcontrib><creatorcontrib>Lu, Chien-Lin</creatorcontrib><creatorcontrib>Chen, Ming-Chi</creatorcontrib><creatorcontrib>Chu, Fang-Ni</creatorcontrib><title>What forces drive the dynamic interaction between regional housing prices?</title><title>International journal of strategic property management</title><addtitle>International Journal of Strategic Property Management</addtitle><description>This paper examines the dynamic interaction between regional housing prices in the United States. We use the copula method to explore the dependent distribution of housing prices in ten metropolitan statistical areas (MSAs) in three regions. The results generally show that changes in time-varying correlation result from different trends in regional housing prices. We regress housing price dynamic correlation on regional economic variables, finding that the economic co-movement mechanism determines the housing price correlation in the Western and Great Lakes regions, while the migration mechanism drives the housing price correlation in the Eastern region. We also find that economic co-movement is the main force driving the housing price correlation between regions.</description><subject>Analysis</subject><subject>Copula model</subject><subject>Cost of living</subject><subject>Demography and human biology</subject><subject>Dynamic correlation</subject><subject>Economic development</subject><subject>Housing</subject><subject>Housing prices</subject><subject>Marketing / Advertising</subject><subject>Metropolitan statistical areas</subject><subject>Micro-Economics</subject><subject>Migration Studies</subject><subject>Regional housing prices</subject><subject>Regions</subject><subject>Rural and urban sociology</subject><issn>1648-715X</issn><issn>1648-9179</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>REL</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><sourceid>DOA</sourceid><recordid>eNqFUU1v1DAQjRCVKC3_AKRIXNkl_rZPUFVAW1XqpRLcLMceZ73KxsX2ttp_j9Ms5chlPB6992aeXtN8QN2aSMo_I06lQOzXGneIrxFmFOHuVXM6z1cKCfX62M-gN83bnLddRwVW8rS5-bkxpfUxWcitS-ER2rKB1h0mswu2DVOBZGwJcWp7KE8AU5tgqF8ztpu4z2Ea2ocUKvvLeXPizZjh3fE9a-6_f7u_vFrd3v24vry4XVmqaFlhIZADolDvlDRISm4FSGCUWeU70ffcI-xdPbg3oscMADySDpQQXipGzprrRdZFs9V1986kg44m6OdBTIM2qQQ7gpYEW0IxpmAIhc4ZTJ0BKnpCBfJcVq2Pi9ZDir_3kIvexn2q3rLGWHHEGOKioj4tqMFU0X42DbmWHIZNyYPZ56wvOEKEUP4MZwvcpphzAv9yJOr0HJj-G5ieA9PHwCrv68ILU81jZ55iGp0u5jDG5JOZbMia_E_i_XE1QBz_mWEMY8bIH_aEpgI</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Wu, Yun-Ling</creator><creator>Lu, Chien-Lin</creator><creator>Chen, Ming-Chi</creator><creator>Chu, Fang-Ni</creator><general>Vilnius Gediminas Technical University</general><general>Taylor &amp; Francis</general><scope>AE2</scope><scope>BIXPP</scope><scope>REL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20170901</creationdate><title>What forces drive the dynamic interaction between regional housing prices?</title><author>Wu, Yun-Ling ; Lu, Chien-Lin ; Chen, Ming-Chi ; Chu, Fang-Ni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-2771de391bd98a1886c7e8e545c9f07bb6f12fd164ba7b25eeef18de977f8953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Copula model</topic><topic>Cost of living</topic><topic>Demography and human biology</topic><topic>Dynamic correlation</topic><topic>Economic development</topic><topic>Housing</topic><topic>Housing prices</topic><topic>Marketing / Advertising</topic><topic>Metropolitan statistical areas</topic><topic>Micro-Economics</topic><topic>Migration Studies</topic><topic>Regional housing prices</topic><topic>Regions</topic><topic>Rural and urban sociology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yun-Ling</creatorcontrib><creatorcontrib>Lu, Chien-Lin</creatorcontrib><creatorcontrib>Chen, Ming-Chi</creatorcontrib><creatorcontrib>Chu, Fang-Ni</creatorcontrib><collection>Central and Eastern European Online Library (C.E.E.O.L.) (DFG Nationallizenzen)</collection><collection>CEEOL: Open Access</collection><collection>Central and Eastern European Online Library</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of strategic property management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yun-Ling</au><au>Lu, Chien-Lin</au><au>Chen, Ming-Chi</au><au>Chu, Fang-Ni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What forces drive the dynamic interaction between regional housing prices?</atitle><jtitle>International journal of strategic property management</jtitle><addtitle>International Journal of Strategic Property Management</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>21</volume><issue>3</issue><spage>225</spage><epage>239</epage><pages>225-239</pages><issn>1648-715X</issn><eissn>1648-9179</eissn><abstract>This paper examines the dynamic interaction between regional housing prices in the United States. We use the copula method to explore the dependent distribution of housing prices in ten metropolitan statistical areas (MSAs) in three regions. The results generally show that changes in time-varying correlation result from different trends in regional housing prices. We regress housing price dynamic correlation on regional economic variables, finding that the economic co-movement mechanism determines the housing price correlation in the Western and Great Lakes regions, while the migration mechanism drives the housing price correlation in the Eastern region. We also find that economic co-movement is the main force driving the housing price correlation between regions.</abstract><cop>Vilnius</cop><pub>Vilnius Gediminas Technical University</pub><doi>10.3846/1648715X.2016.1254120</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1648-715X
ispartof International journal of strategic property management, 2017-09, Vol.21 (3), p.225-239
issn 1648-715X
1648-9179
language eng
recordid cdi_proquest_journals_2296155167
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Business Source Complete; Alma/SFX Local Collection
subjects Analysis
Copula model
Cost of living
Demography and human biology
Dynamic correlation
Economic development
Housing
Housing prices
Marketing / Advertising
Metropolitan statistical areas
Micro-Economics
Migration Studies
Regional housing prices
Regions
Rural and urban sociology
title What forces drive the dynamic interaction between regional housing prices?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T00%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ceeol_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20forces%20drive%20the%20dynamic%20interaction%20between%20regional%20housing%20prices?&rft.jtitle=International%20journal%20of%20strategic%20property%20management&rft.au=Wu,%20Yun-Ling&rft.date=2017-09-01&rft.volume=21&rft.issue=3&rft.spage=225&rft.epage=239&rft.pages=225-239&rft.issn=1648-715X&rft.eissn=1648-9179&rft_id=info:doi/10.3846/1648715X.2016.1254120&rft_dat=%3Cceeol_proqu%3E552255%3C/ceeol_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296155167&rft_id=info:pmid/&rft_galeid=A611334667&rft_ceeol_id=552255&rft_doaj_id=oai_doaj_org_article_832c34224ea34e0da24dae47b3471f68&rfr_iscdi=true