Multiscale computational modelling of closed cell metallic foams with detailed microstructural morphological control

This contribution addresses the multiscale computational modelling of closed cell metallic foams by means of an integrated Representative Volume Element (RVE) generation and computation strategy. The microstructural geometry is computationally generated by controlling relevant fine scale features su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering science 2019-10, Vol.143, p.92-114
Hauptverfasser: Ghazi, A., Berke, P., Ehab Moustafa Kamel, K., Sonon, B., Tiago, C., Massart, T.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue
container_start_page 92
container_title International journal of engineering science
container_volume 143
creator Ghazi, A.
Berke, P.
Ehab Moustafa Kamel, K.
Sonon, B.
Tiago, C.
Massart, T.J.
description This contribution addresses the multiscale computational modelling of closed cell metallic foams by means of an integrated Representative Volume Element (RVE) generation and computation strategy. The microstructural geometry is computationally generated by controlling relevant fine scale features such as the distribution of cell sizes, the spatial organization of cell sizes and that of cell wall thicknesses and curvatures. The number of faces per cell and of edges per face are also set to comply with the experimentally observed values. The computational generation of the RVE is built on three ingredients: (i) a random close inclusions packing algorithm based on random sequential addition assisted by neighbour distance control, (ii) a distance field-based shape tessellation (morphing) that allows reproducing cell wall curvatures and varying cell wall thicknesses from the inclusions packing, (iii) a close control of the shape of the cells. The RVE geometry is thus described using implicit functions, thereby allowing a seamless transition towards a recently developed mesh generation technique for heterogeneous microstructures represented by such implicit functions, enabling simulations in standard softwares. This controlled generation methodology is illustrated based on experimental data available in literature for morphological indicators relevant to the foam mechanical behaviour. A qualitative and quantitative agreement between FE results and experimental data is obtained for the mechanical response of a commercially available ALPORAS foam. The individual contribution of each microstructural feature (size distributions, wall thickness and curvatures) to the average behaviour of closed cell foams is assessed through FE computations on increasingly complex geometries.
doi_str_mv 10.1016/j.ijengsci.2019.06.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2295421710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020722519300631</els_id><sourcerecordid>2295421710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-3defec37cbcd37926d4a07968d5a47c34f21717226a63aee9d1766e21cd677083</originalsourceid><addsrcrecordid>eNqFkEFvGyEQhVHVSnGd_IUIqefdDuwazK2RlaaVEuWSnBGFWZsVu7jApuq_D47bc05Iw_fezHuEXDNoGTDxdWz9iPM-W99yYKoF0QLjH8iKbaVqOFPyI1kBcGgk55sL8jnnEQA2nVIrUh6WUHy2JiC1cTouxRQfZxPoFB2G4Oc9jQO1IWZ01NYJnbCY-mHpEM2U6R9fDtTVmQ-VmLxNMZe02LKkN5d0PMQQ976uqBvmkmK4JJ8GEzJe_XvX5Pn77dPuR3P_ePdzd3Pf2K6H0nQOB7SdtL-s66TiwvUGpBJbtzG9rMzAmWQ1lDCiM4jKMSkEcmadkBK23Zp8OfseU_y9YC56jEuq4bLmXG36kxwqJc7U6fKccNDH5CeT_moG-tSwHvX_hvWpYQ1C14ar8NtZiDXDi8ekK4GzRecT2qJd9O9ZvAK0f4sP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2295421710</pqid></control><display><type>article</type><title>Multiscale computational modelling of closed cell metallic foams with detailed microstructural morphological control</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ghazi, A. ; Berke, P. ; Ehab Moustafa Kamel, K. ; Sonon, B. ; Tiago, C. ; Massart, T.J.</creator><creatorcontrib>Ghazi, A. ; Berke, P. ; Ehab Moustafa Kamel, K. ; Sonon, B. ; Tiago, C. ; Massart, T.J.</creatorcontrib><description>This contribution addresses the multiscale computational modelling of closed cell metallic foams by means of an integrated Representative Volume Element (RVE) generation and computation strategy. The microstructural geometry is computationally generated by controlling relevant fine scale features such as the distribution of cell sizes, the spatial organization of cell sizes and that of cell wall thicknesses and curvatures. The number of faces per cell and of edges per face are also set to comply with the experimentally observed values. The computational generation of the RVE is built on three ingredients: (i) a random close inclusions packing algorithm based on random sequential addition assisted by neighbour distance control, (ii) a distance field-based shape tessellation (morphing) that allows reproducing cell wall curvatures and varying cell wall thicknesses from the inclusions packing, (iii) a close control of the shape of the cells. The RVE geometry is thus described using implicit functions, thereby allowing a seamless transition towards a recently developed mesh generation technique for heterogeneous microstructures represented by such implicit functions, enabling simulations in standard softwares. This controlled generation methodology is illustrated based on experimental data available in literature for morphological indicators relevant to the foam mechanical behaviour. A qualitative and quantitative agreement between FE results and experimental data is obtained for the mechanical response of a commercially available ALPORAS foam. The individual contribution of each microstructural feature (size distributions, wall thickness and curvatures) to the average behaviour of closed cell foams is assessed through FE computations on increasingly complex geometries.</description><identifier>ISSN: 0020-7225</identifier><identifier>EISSN: 1879-2197</identifier><identifier>DOI: 10.1016/j.ijengsci.2019.06.012</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Automated meshing ; Cells ; Closed-cell metallic foam ; Computational homogenization ; Computer simulation ; Finite element method ; Foamed metals ; Inclusions ; Mathematical models ; Mechanical analysis ; Mechanical properties ; Mesh generation ; Microstructure ; Molecular structure ; Morphing ; Morphological indicators ; Morphology ; Qualitative analysis ; RVE Generation ; Simulation ; Tessellation ; Wall thickness</subject><ispartof>International journal of engineering science, 2019-10, Vol.143, p.92-114</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-3defec37cbcd37926d4a07968d5a47c34f21717226a63aee9d1766e21cd677083</citedby><cites>FETCH-LOGICAL-c340t-3defec37cbcd37926d4a07968d5a47c34f21717226a63aee9d1766e21cd677083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijengsci.2019.06.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ghazi, A.</creatorcontrib><creatorcontrib>Berke, P.</creatorcontrib><creatorcontrib>Ehab Moustafa Kamel, K.</creatorcontrib><creatorcontrib>Sonon, B.</creatorcontrib><creatorcontrib>Tiago, C.</creatorcontrib><creatorcontrib>Massart, T.J.</creatorcontrib><title>Multiscale computational modelling of closed cell metallic foams with detailed microstructural morphological control</title><title>International journal of engineering science</title><description>This contribution addresses the multiscale computational modelling of closed cell metallic foams by means of an integrated Representative Volume Element (RVE) generation and computation strategy. The microstructural geometry is computationally generated by controlling relevant fine scale features such as the distribution of cell sizes, the spatial organization of cell sizes and that of cell wall thicknesses and curvatures. The number of faces per cell and of edges per face are also set to comply with the experimentally observed values. The computational generation of the RVE is built on three ingredients: (i) a random close inclusions packing algorithm based on random sequential addition assisted by neighbour distance control, (ii) a distance field-based shape tessellation (morphing) that allows reproducing cell wall curvatures and varying cell wall thicknesses from the inclusions packing, (iii) a close control of the shape of the cells. The RVE geometry is thus described using implicit functions, thereby allowing a seamless transition towards a recently developed mesh generation technique for heterogeneous microstructures represented by such implicit functions, enabling simulations in standard softwares. This controlled generation methodology is illustrated based on experimental data available in literature for morphological indicators relevant to the foam mechanical behaviour. A qualitative and quantitative agreement between FE results and experimental data is obtained for the mechanical response of a commercially available ALPORAS foam. The individual contribution of each microstructural feature (size distributions, wall thickness and curvatures) to the average behaviour of closed cell foams is assessed through FE computations on increasingly complex geometries.</description><subject>Algorithms</subject><subject>Automated meshing</subject><subject>Cells</subject><subject>Closed-cell metallic foam</subject><subject>Computational homogenization</subject><subject>Computer simulation</subject><subject>Finite element method</subject><subject>Foamed metals</subject><subject>Inclusions</subject><subject>Mathematical models</subject><subject>Mechanical analysis</subject><subject>Mechanical properties</subject><subject>Mesh generation</subject><subject>Microstructure</subject><subject>Molecular structure</subject><subject>Morphing</subject><subject>Morphological indicators</subject><subject>Morphology</subject><subject>Qualitative analysis</subject><subject>RVE Generation</subject><subject>Simulation</subject><subject>Tessellation</subject><subject>Wall thickness</subject><issn>0020-7225</issn><issn>1879-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEFvGyEQhVHVSnGd_IUIqefdDuwazK2RlaaVEuWSnBGFWZsVu7jApuq_D47bc05Iw_fezHuEXDNoGTDxdWz9iPM-W99yYKoF0QLjH8iKbaVqOFPyI1kBcGgk55sL8jnnEQA2nVIrUh6WUHy2JiC1cTouxRQfZxPoFB2G4Oc9jQO1IWZ01NYJnbCY-mHpEM2U6R9fDtTVmQ-VmLxNMZe02LKkN5d0PMQQ976uqBvmkmK4JJ8GEzJe_XvX5Pn77dPuR3P_ePdzd3Pf2K6H0nQOB7SdtL-s66TiwvUGpBJbtzG9rMzAmWQ1lDCiM4jKMSkEcmadkBK23Zp8OfseU_y9YC56jEuq4bLmXG36kxwqJc7U6fKccNDH5CeT_moG-tSwHvX_hvWpYQ1C14ar8NtZiDXDi8ekK4GzRecT2qJd9O9ZvAK0f4sP</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Ghazi, A.</creator><creator>Berke, P.</creator><creator>Ehab Moustafa Kamel, K.</creator><creator>Sonon, B.</creator><creator>Tiago, C.</creator><creator>Massart, T.J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201910</creationdate><title>Multiscale computational modelling of closed cell metallic foams with detailed microstructural morphological control</title><author>Ghazi, A. ; Berke, P. ; Ehab Moustafa Kamel, K. ; Sonon, B. ; Tiago, C. ; Massart, T.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-3defec37cbcd37926d4a07968d5a47c34f21717226a63aee9d1766e21cd677083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Automated meshing</topic><topic>Cells</topic><topic>Closed-cell metallic foam</topic><topic>Computational homogenization</topic><topic>Computer simulation</topic><topic>Finite element method</topic><topic>Foamed metals</topic><topic>Inclusions</topic><topic>Mathematical models</topic><topic>Mechanical analysis</topic><topic>Mechanical properties</topic><topic>Mesh generation</topic><topic>Microstructure</topic><topic>Molecular structure</topic><topic>Morphing</topic><topic>Morphological indicators</topic><topic>Morphology</topic><topic>Qualitative analysis</topic><topic>RVE Generation</topic><topic>Simulation</topic><topic>Tessellation</topic><topic>Wall thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghazi, A.</creatorcontrib><creatorcontrib>Berke, P.</creatorcontrib><creatorcontrib>Ehab Moustafa Kamel, K.</creatorcontrib><creatorcontrib>Sonon, B.</creatorcontrib><creatorcontrib>Tiago, C.</creatorcontrib><creatorcontrib>Massart, T.J.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghazi, A.</au><au>Berke, P.</au><au>Ehab Moustafa Kamel, K.</au><au>Sonon, B.</au><au>Tiago, C.</au><au>Massart, T.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale computational modelling of closed cell metallic foams with detailed microstructural morphological control</atitle><jtitle>International journal of engineering science</jtitle><date>2019-10</date><risdate>2019</risdate><volume>143</volume><spage>92</spage><epage>114</epage><pages>92-114</pages><issn>0020-7225</issn><eissn>1879-2197</eissn><abstract>This contribution addresses the multiscale computational modelling of closed cell metallic foams by means of an integrated Representative Volume Element (RVE) generation and computation strategy. The microstructural geometry is computationally generated by controlling relevant fine scale features such as the distribution of cell sizes, the spatial organization of cell sizes and that of cell wall thicknesses and curvatures. The number of faces per cell and of edges per face are also set to comply with the experimentally observed values. The computational generation of the RVE is built on three ingredients: (i) a random close inclusions packing algorithm based on random sequential addition assisted by neighbour distance control, (ii) a distance field-based shape tessellation (morphing) that allows reproducing cell wall curvatures and varying cell wall thicknesses from the inclusions packing, (iii) a close control of the shape of the cells. The RVE geometry is thus described using implicit functions, thereby allowing a seamless transition towards a recently developed mesh generation technique for heterogeneous microstructures represented by such implicit functions, enabling simulations in standard softwares. This controlled generation methodology is illustrated based on experimental data available in literature for morphological indicators relevant to the foam mechanical behaviour. A qualitative and quantitative agreement between FE results and experimental data is obtained for the mechanical response of a commercially available ALPORAS foam. The individual contribution of each microstructural feature (size distributions, wall thickness and curvatures) to the average behaviour of closed cell foams is assessed through FE computations on increasingly complex geometries.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijengsci.2019.06.012</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7225
ispartof International journal of engineering science, 2019-10, Vol.143, p.92-114
issn 0020-7225
1879-2197
language eng
recordid cdi_proquest_journals_2295421710
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Automated meshing
Cells
Closed-cell metallic foam
Computational homogenization
Computer simulation
Finite element method
Foamed metals
Inclusions
Mathematical models
Mechanical analysis
Mechanical properties
Mesh generation
Microstructure
Molecular structure
Morphing
Morphological indicators
Morphology
Qualitative analysis
RVE Generation
Simulation
Tessellation
Wall thickness
title Multiscale computational modelling of closed cell metallic foams with detailed microstructural morphological control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20computational%20modelling%20of%20closed%20cell%20metallic%20foams%20with%20detailed%20microstructural%20morphological%20control&rft.jtitle=International%20journal%20of%20engineering%20science&rft.au=Ghazi,%20A.&rft.date=2019-10&rft.volume=143&rft.spage=92&rft.epage=114&rft.pages=92-114&rft.issn=0020-7225&rft.eissn=1879-2197&rft_id=info:doi/10.1016/j.ijengsci.2019.06.012&rft_dat=%3Cproquest_cross%3E2295421710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2295421710&rft_id=info:pmid/&rft_els_id=S0020722519300631&rfr_iscdi=true