p-Optimality-Based Multiobjective Root System Growth Algorithms for Multiobjective Applications

In this paper, a multiobjective root system growth algorithm-based p-optimality (p-MORSGA) is proposed. The proposed p-MORSGA extended original root system growth algorithm with multiobjective nondomination strategy. To enhance its effect of convergence of solution groups, the p-optimality criterion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2019, Vol.2019 (2019), p.1-25
Hauptverfasser: Ding, Man, Song, Lina, Chen, Hanning, Liu, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 2019
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2019
creator Ding, Man
Song, Lina
Chen, Hanning
Liu, Rui
description In this paper, a multiobjective root system growth algorithm-based p-optimality (p-MORSGA) is proposed. The proposed p-MORSGA extended original root system growth algorithm with multiobjective nondomination strategy. To enhance its effect of convergence of solution groups, the p-optimality criterion is employed to determine the solutions of last nondominated front into the next generation group. In the evolution process, global general (GG), concerning the margin information and population density, is selected as the suitable optimality criterion of evaluating the performance of solutions. Application of the new p-MORSGA on several multiobjective benchmark functions shows a marked improvement in performance over the modified classical MOEAs with such criterion. Finally, the proposed p-MORSGA is applied to solve two real-world problems, multiobjective portfolio optimization problems (MOPOPs) and multiobjective optimal power flow (OPF) problems. The experimental results demonstrate that p-MORSGA is extremely effective for real-world application problems.
doi_str_mv 10.1155/2019/7561398
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2295345982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2295345982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-c6c7e44bfc122e1c947e8ed71a8c1a95454b52fbbb443d62f89268e41f99e0443</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgCs7pzbMUPGpd3jRpk-McOgVl4Ad4K2mauIxuqUnm2H9vRweCF08JD7834X0QOgd8A8DYiGAQo4LlkAl-gAbA8ixlQIvD7o4JTYFkH8foJIQFxgQY8AEq23TWRruUjY3b9FYGXSfP6yZaVy20ivZbJy_OxeR1G6JeJlPvNnGejJtP522cL0NinP87MG7bxirZRatwio6MbII-259D9H5_9zZ5SJ9m08fJ-ClVGRQxVbkqNKWVUUCIBiVoobmuC5BcgRSMMloxYqqqojSrc2K4IDnXFIwQGnfZEF3277befa11iOXCrf2q-7IkRLCMMsFJp657pbwLwWtTtr7b3W9LwOWuwnJXYbmvsONXPZ_bVS039j990WvdGW3krwZRYM6yH_OCe6c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2295345982</pqid></control><display><type>article</type><title>p-Optimality-Based Multiobjective Root System Growth Algorithms for Multiobjective Applications</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Ding, Man ; Song, Lina ; Chen, Hanning ; Liu, Rui</creator><contributor>Perera, Ricardo ; Ricardo Perera</contributor><creatorcontrib>Ding, Man ; Song, Lina ; Chen, Hanning ; Liu, Rui ; Perera, Ricardo ; Ricardo Perera</creatorcontrib><description>In this paper, a multiobjective root system growth algorithm-based p-optimality (p-MORSGA) is proposed. The proposed p-MORSGA extended original root system growth algorithm with multiobjective nondomination strategy. To enhance its effect of convergence of solution groups, the p-optimality criterion is employed to determine the solutions of last nondominated front into the next generation group. In the evolution process, global general (GG), concerning the margin information and population density, is selected as the suitable optimality criterion of evaluating the performance of solutions. Application of the new p-MORSGA on several multiobjective benchmark functions shows a marked improvement in performance over the modified classical MOEAs with such criterion. Finally, the proposed p-MORSGA is applied to solve two real-world problems, multiobjective portfolio optimization problems (MOPOPs) and multiobjective optimal power flow (OPF) problems. The experimental results demonstrate that p-MORSGA is extremely effective for real-world application problems.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2019/7561398</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Engineering ; Generators ; Genetic algorithms ; Mathematical problems ; Multiple objective analysis ; Optimality criteria ; Optimization ; Population density ; Portfolio management ; Power flow</subject><ispartof>Mathematical problems in engineering, 2019, Vol.2019 (2019), p.1-25</ispartof><rights>Copyright © 2019 Rui Liu et al.</rights><rights>Copyright © 2019 Rui Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-c6c7e44bfc122e1c947e8ed71a8c1a95454b52fbbb443d62f89268e41f99e0443</cites><orcidid>0000-0002-9885-6653</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><contributor>Perera, Ricardo</contributor><contributor>Ricardo Perera</contributor><creatorcontrib>Ding, Man</creatorcontrib><creatorcontrib>Song, Lina</creatorcontrib><creatorcontrib>Chen, Hanning</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><title>p-Optimality-Based Multiobjective Root System Growth Algorithms for Multiobjective Applications</title><title>Mathematical problems in engineering</title><description>In this paper, a multiobjective root system growth algorithm-based p-optimality (p-MORSGA) is proposed. The proposed p-MORSGA extended original root system growth algorithm with multiobjective nondomination strategy. To enhance its effect of convergence of solution groups, the p-optimality criterion is employed to determine the solutions of last nondominated front into the next generation group. In the evolution process, global general (GG), concerning the margin information and population density, is selected as the suitable optimality criterion of evaluating the performance of solutions. Application of the new p-MORSGA on several multiobjective benchmark functions shows a marked improvement in performance over the modified classical MOEAs with such criterion. Finally, the proposed p-MORSGA is applied to solve two real-world problems, multiobjective portfolio optimization problems (MOPOPs) and multiobjective optimal power flow (OPF) problems. The experimental results demonstrate that p-MORSGA is extremely effective for real-world application problems.</description><subject>Algorithms</subject><subject>Engineering</subject><subject>Generators</subject><subject>Genetic algorithms</subject><subject>Mathematical problems</subject><subject>Multiple objective analysis</subject><subject>Optimality criteria</subject><subject>Optimization</subject><subject>Population density</subject><subject>Portfolio management</subject><subject>Power flow</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M1LwzAYBvAgCs7pzbMUPGpd3jRpk-McOgVl4Ad4K2mauIxuqUnm2H9vRweCF08JD7834X0QOgd8A8DYiGAQo4LlkAl-gAbA8ixlQIvD7o4JTYFkH8foJIQFxgQY8AEq23TWRruUjY3b9FYGXSfP6yZaVy20ivZbJy_OxeR1G6JeJlPvNnGejJtP522cL0NinP87MG7bxirZRatwio6MbII-259D9H5_9zZ5SJ9m08fJ-ClVGRQxVbkqNKWVUUCIBiVoobmuC5BcgRSMMloxYqqqojSrc2K4IDnXFIwQGnfZEF3277befa11iOXCrf2q-7IkRLCMMsFJp657pbwLwWtTtr7b3W9LwOWuwnJXYbmvsONXPZ_bVS039j990WvdGW3krwZRYM6yH_OCe6c</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Ding, Man</creator><creator>Song, Lina</creator><creator>Chen, Hanning</creator><creator>Liu, Rui</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9885-6653</orcidid></search><sort><creationdate>2019</creationdate><title>p-Optimality-Based Multiobjective Root System Growth Algorithms for Multiobjective Applications</title><author>Ding, Man ; Song, Lina ; Chen, Hanning ; Liu, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-c6c7e44bfc122e1c947e8ed71a8c1a95454b52fbbb443d62f89268e41f99e0443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Engineering</topic><topic>Generators</topic><topic>Genetic algorithms</topic><topic>Mathematical problems</topic><topic>Multiple objective analysis</topic><topic>Optimality criteria</topic><topic>Optimization</topic><topic>Population density</topic><topic>Portfolio management</topic><topic>Power flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Man</creatorcontrib><creatorcontrib>Song, Lina</creatorcontrib><creatorcontrib>Chen, Hanning</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Man</au><au>Song, Lina</au><au>Chen, Hanning</au><au>Liu, Rui</au><au>Perera, Ricardo</au><au>Ricardo Perera</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>p-Optimality-Based Multiobjective Root System Growth Algorithms for Multiobjective Applications</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In this paper, a multiobjective root system growth algorithm-based p-optimality (p-MORSGA) is proposed. The proposed p-MORSGA extended original root system growth algorithm with multiobjective nondomination strategy. To enhance its effect of convergence of solution groups, the p-optimality criterion is employed to determine the solutions of last nondominated front into the next generation group. In the evolution process, global general (GG), concerning the margin information and population density, is selected as the suitable optimality criterion of evaluating the performance of solutions. Application of the new p-MORSGA on several multiobjective benchmark functions shows a marked improvement in performance over the modified classical MOEAs with such criterion. Finally, the proposed p-MORSGA is applied to solve two real-world problems, multiobjective portfolio optimization problems (MOPOPs) and multiobjective optimal power flow (OPF) problems. The experimental results demonstrate that p-MORSGA is extremely effective for real-world application problems.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/7561398</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-9885-6653</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2019, Vol.2019 (2019), p.1-25
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2295345982
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection
subjects Algorithms
Engineering
Generators
Genetic algorithms
Mathematical problems
Multiple objective analysis
Optimality criteria
Optimization
Population density
Portfolio management
Power flow
title p-Optimality-Based Multiobjective Root System Growth Algorithms for Multiobjective Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=p-Optimality-Based%20Multiobjective%20Root%20System%20Growth%20Algorithms%20for%20Multiobjective%20Applications&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Ding,%20Man&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2019/7561398&rft_dat=%3Cproquest_cross%3E2295345982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2295345982&rft_id=info:pmid/&rfr_iscdi=true