A Scalable Platform for Monitoring Data Intensive Applications

Latest advances in information technology and the widespread growth in different areas are producing large amounts of data. Consequently, in the past decade a large number of distributed platforms for storing and processing large datasets have been proposed. Whether in development or in production,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of grid computing 2019-09, Vol.17 (3), p.503-528
Hauptverfasser: Drăgan, Ioan, Iuhasz, Gabriel, Petcu, Dana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 528
container_issue 3
container_start_page 503
container_title Journal of grid computing
container_volume 17
creator Drăgan, Ioan
Iuhasz, Gabriel
Petcu, Dana
description Latest advances in information technology and the widespread growth in different areas are producing large amounts of data. Consequently, in the past decade a large number of distributed platforms for storing and processing large datasets have been proposed. Whether in development or in production, monitoring the applications running on these platforms is not an easy task, dedicated tools and platforms were proposed for this task yet none are specially designed for Big Data frameworks. In this paper we present a distributed, scalable, highly available platform able to collect, store, query and process monitoring data obtained from multiple Big Data frameworks. Alongside the architecture we experimentally show that the solution proposed is scalable and can handle a substantial quantity of monitoring data.
doi_str_mv 10.1007/s10723-019-09483-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2294875902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2294875902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-e62bec5f47897fd19f3ed1979f2298f72df648a4df2915ae7e76cd1fe8c4e2183</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgOpq_mSQboVSrhYqCug5pJpEp08mYpIJvb9oR3Lk59y7OOZf7AXBJ8DXBWNwkggVlCBOFsOKSIXIEJqQSFCki-fFhx0hIwU7BWUobjGklMZ2A2xl8taYz687Bl85kH-IWFoFPoW9ziG3_Ae9MNnDZZ9en9svB2TB0rTW5DX06ByfedMld_M4peF_cv80f0er5YTmfrZBlNcvI1XTtbOW5kEr4hijPXFGhPKVKekEbX3NpeOOpIpVxwonaNsQ7abmjRLIpuBp7hxg-dy5lvQm72JeTujRwKSqFaXHR0WVjSCk6r4fYbk381gTrPSc9ctKFkz5w0qSE2BhKw_5bF_-q_0n9ANIdaow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294875902</pqid></control><display><type>article</type><title>A Scalable Platform for Monitoring Data Intensive Applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Drăgan, Ioan ; Iuhasz, Gabriel ; Petcu, Dana</creator><creatorcontrib>Drăgan, Ioan ; Iuhasz, Gabriel ; Petcu, Dana</creatorcontrib><description>Latest advances in information technology and the widespread growth in different areas are producing large amounts of data. Consequently, in the past decade a large number of distributed platforms for storing and processing large datasets have been proposed. Whether in development or in production, monitoring the applications running on these platforms is not an easy task, dedicated tools and platforms were proposed for this task yet none are specially designed for Big Data frameworks. In this paper we present a distributed, scalable, highly available platform able to collect, store, query and process monitoring data obtained from multiple Big Data frameworks. Alongside the architecture we experimentally show that the solution proposed is scalable and can handle a substantial quantity of monitoring data.</description><identifier>ISSN: 1570-7873</identifier><identifier>EISSN: 1572-9184</identifier><identifier>DOI: 10.1007/s10723-019-09483-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Big Data ; Computer Science ; Data management ; Management of Computing and Information Systems ; Monitoring ; Platforms ; Processor Architectures ; User Interfaces and Human Computer Interaction</subject><ispartof>Journal of grid computing, 2019-09, Vol.17 (3), p.503-528</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Journal of Grid Computing is a copyright of Springer, (2019). All Rights Reserved.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-e62bec5f47897fd19f3ed1979f2298f72df648a4df2915ae7e76cd1fe8c4e2183</citedby><cites>FETCH-LOGICAL-c363t-e62bec5f47897fd19f3ed1979f2298f72df648a4df2915ae7e76cd1fe8c4e2183</cites><orcidid>0000-0002-2881-7480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10723-019-09483-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10723-019-09483-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Drăgan, Ioan</creatorcontrib><creatorcontrib>Iuhasz, Gabriel</creatorcontrib><creatorcontrib>Petcu, Dana</creatorcontrib><title>A Scalable Platform for Monitoring Data Intensive Applications</title><title>Journal of grid computing</title><addtitle>J Grid Computing</addtitle><description>Latest advances in information technology and the widespread growth in different areas are producing large amounts of data. Consequently, in the past decade a large number of distributed platforms for storing and processing large datasets have been proposed. Whether in development or in production, monitoring the applications running on these platforms is not an easy task, dedicated tools and platforms were proposed for this task yet none are specially designed for Big Data frameworks. In this paper we present a distributed, scalable, highly available platform able to collect, store, query and process monitoring data obtained from multiple Big Data frameworks. Alongside the architecture we experimentally show that the solution proposed is scalable and can handle a substantial quantity of monitoring data.</description><subject>Big Data</subject><subject>Computer Science</subject><subject>Data management</subject><subject>Management of Computing and Information Systems</subject><subject>Monitoring</subject><subject>Platforms</subject><subject>Processor Architectures</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1570-7873</issn><issn>1572-9184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KAzEUhYMoWKsv4CrgOpq_mSQboVSrhYqCug5pJpEp08mYpIJvb9oR3Lk59y7OOZf7AXBJ8DXBWNwkggVlCBOFsOKSIXIEJqQSFCki-fFhx0hIwU7BWUobjGklMZ2A2xl8taYz687Bl85kH-IWFoFPoW9ziG3_Ae9MNnDZZ9en9svB2TB0rTW5DX06ByfedMld_M4peF_cv80f0er5YTmfrZBlNcvI1XTtbOW5kEr4hijPXFGhPKVKekEbX3NpeOOpIpVxwonaNsQ7abmjRLIpuBp7hxg-dy5lvQm72JeTujRwKSqFaXHR0WVjSCk6r4fYbk381gTrPSc9ctKFkz5w0qSE2BhKw_5bF_-q_0n9ANIdaow</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Drăgan, Ioan</creator><creator>Iuhasz, Gabriel</creator><creator>Petcu, Dana</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2881-7480</orcidid></search><sort><creationdate>20190901</creationdate><title>A Scalable Platform for Monitoring Data Intensive Applications</title><author>Drăgan, Ioan ; Iuhasz, Gabriel ; Petcu, Dana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-e62bec5f47897fd19f3ed1979f2298f72df648a4df2915ae7e76cd1fe8c4e2183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Big Data</topic><topic>Computer Science</topic><topic>Data management</topic><topic>Management of Computing and Information Systems</topic><topic>Monitoring</topic><topic>Platforms</topic><topic>Processor Architectures</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>online_resources</toplevel><creatorcontrib>Drăgan, Ioan</creatorcontrib><creatorcontrib>Iuhasz, Gabriel</creatorcontrib><creatorcontrib>Petcu, Dana</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of grid computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drăgan, Ioan</au><au>Iuhasz, Gabriel</au><au>Petcu, Dana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Scalable Platform for Monitoring Data Intensive Applications</atitle><jtitle>Journal of grid computing</jtitle><stitle>J Grid Computing</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>17</volume><issue>3</issue><spage>503</spage><epage>528</epage><pages>503-528</pages><issn>1570-7873</issn><eissn>1572-9184</eissn><abstract>Latest advances in information technology and the widespread growth in different areas are producing large amounts of data. Consequently, in the past decade a large number of distributed platforms for storing and processing large datasets have been proposed. Whether in development or in production, monitoring the applications running on these platforms is not an easy task, dedicated tools and platforms were proposed for this task yet none are specially designed for Big Data frameworks. In this paper we present a distributed, scalable, highly available platform able to collect, store, query and process monitoring data obtained from multiple Big Data frameworks. Alongside the architecture we experimentally show that the solution proposed is scalable and can handle a substantial quantity of monitoring data.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10723-019-09483-1</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-2881-7480</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1570-7873
ispartof Journal of grid computing, 2019-09, Vol.17 (3), p.503-528
issn 1570-7873
1572-9184
language eng
recordid cdi_proquest_journals_2294875902
source SpringerLink Journals - AutoHoldings
subjects Big Data
Computer Science
Data management
Management of Computing and Information Systems
Monitoring
Platforms
Processor Architectures
User Interfaces and Human Computer Interaction
title A Scalable Platform for Monitoring Data Intensive Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T10%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Scalable%20Platform%20for%20Monitoring%20Data%20Intensive%20Applications&rft.jtitle=Journal%20of%20grid%20computing&rft.au=Dr%C4%83gan,%20Ioan&rft.date=2019-09-01&rft.volume=17&rft.issue=3&rft.spage=503&rft.epage=528&rft.pages=503-528&rft.issn=1570-7873&rft.eissn=1572-9184&rft_id=info:doi/10.1007/s10723-019-09483-1&rft_dat=%3Cproquest_cross%3E2294875902%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2294875902&rft_id=info:pmid/&rfr_iscdi=true