C P 2 S Sigma Models Described Through Hypergeometric Orthogonal Polynomials

The main objective of this paper is to establish a new connection between the Hermitian rank-1 projector solutions of the Euclidean CP2S sigma model in two dimensions and the particular hypergeometric orthogonal polynomials called Krawtchouk polynomials. We show that any Veronese subsequent analytic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2019-01, Vol.20 (10), p.3365-3387
Hauptverfasser: Crampe, N, Grundland, A M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3387
container_issue 10
container_start_page 3365
container_title Annales Henri Poincaré
container_volume 20
creator Crampe, N
Grundland, A M
description The main objective of this paper is to establish a new connection between the Hermitian rank-1 projector solutions of the Euclidean CP2S sigma model in two dimensions and the particular hypergeometric orthogonal polynomials called Krawtchouk polynomials. We show that any Veronese subsequent analytical solutions of the CP2S model, defined on the Riemann sphere and having a finite action, can be explicitly parametrized in terms of these polynomials. We apply these results to the analysis of surfaces associated with CP2S models defined using the generalized Weierstrass formula for immersion. We show that these surfaces are homeomorphic to spheres in the su(2s+1) algebra and express several other geometrical characteristics in terms of the Krawtchouk polynomials. Finally, a connection between the su(2) spin-s representation and the CP2S model is explored in detail.
doi_str_mv 10.1007/s00023-019-00830-2
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2294512233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2294512233</sourcerecordid><originalsourceid>FETCH-proquest_journals_22945122333</originalsourceid><addsrcrecordid>eNqNi7sOgkAQAC9GE_HxA1abWJ_u7eGD2kcoNJJob1BPwICrd1Dw91IYa6uZYkaIkcKJQlxMHSKSlqgCibjUKKklPOWTL3E-V-2f60VX9Jx7ICpa6sATuxVEQHCEY5YUMez5ZnIHa-OuNruYG5xSy1WSQli_jE0MF6a02RUOtkw54WecQ8R5_eQii3M3EJ17AzP8si_G281pFcqX5XdlXHl-cGWbyZ2JAn-miLTW_1UfO1RDMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294512233</pqid></control><display><type>article</type><title>C P 2 S Sigma Models Described Through Hypergeometric Orthogonal Polynomials</title><source>Springer Nature - Complete Springer Journals</source><creator>Crampe, N ; Grundland, A M</creator><creatorcontrib>Crampe, N ; Grundland, A M</creatorcontrib><description>The main objective of this paper is to establish a new connection between the Hermitian rank-1 projector solutions of the Euclidean CP2S sigma model in two dimensions and the particular hypergeometric orthogonal polynomials called Krawtchouk polynomials. We show that any Veronese subsequent analytical solutions of the CP2S model, defined on the Riemann sphere and having a finite action, can be explicitly parametrized in terms of these polynomials. We apply these results to the analysis of surfaces associated with CP2S models defined using the generalized Weierstrass formula for immersion. We show that these surfaces are homeomorphic to spheres in the su(2s+1) algebra and express several other geometrical characteristics in terms of the Krawtchouk polynomials. Finally, a connection between the su(2) spin-s representation and the CP2S model is explored in detail.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-019-00830-2</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Euclidean geometry ; Exact solutions ; Polynomials ; Riemann manifold ; Submerging ; Two dimensional models</subject><ispartof>Annales Henri Poincaré, 2019-01, Vol.20 (10), p.3365-3387</ispartof><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Crampe, N</creatorcontrib><creatorcontrib>Grundland, A M</creatorcontrib><title>C P 2 S Sigma Models Described Through Hypergeometric Orthogonal Polynomials</title><title>Annales Henri Poincaré</title><description>The main objective of this paper is to establish a new connection between the Hermitian rank-1 projector solutions of the Euclidean CP2S sigma model in two dimensions and the particular hypergeometric orthogonal polynomials called Krawtchouk polynomials. We show that any Veronese subsequent analytical solutions of the CP2S model, defined on the Riemann sphere and having a finite action, can be explicitly parametrized in terms of these polynomials. We apply these results to the analysis of surfaces associated with CP2S models defined using the generalized Weierstrass formula for immersion. We show that these surfaces are homeomorphic to spheres in the su(2s+1) algebra and express several other geometrical characteristics in terms of the Krawtchouk polynomials. Finally, a connection between the su(2) spin-s representation and the CP2S model is explored in detail.</description><subject>Euclidean geometry</subject><subject>Exact solutions</subject><subject>Polynomials</subject><subject>Riemann manifold</subject><subject>Submerging</subject><subject>Two dimensional models</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNi7sOgkAQAC9GE_HxA1abWJ_u7eGD2kcoNJJob1BPwICrd1Dw91IYa6uZYkaIkcKJQlxMHSKSlqgCibjUKKklPOWTL3E-V-2f60VX9Jx7ICpa6sATuxVEQHCEY5YUMez5ZnIHa-OuNruYG5xSy1WSQli_jE0MF6a02RUOtkw54WecQ8R5_eQii3M3EJ17AzP8si_G281pFcqX5XdlXHl-cGWbyZ2JAn-miLTW_1UfO1RDMQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Crampe, N</creator><creator>Grundland, A M</creator><general>Springer Nature B.V</general><scope/></search><sort><creationdate>20190101</creationdate><title>C P 2 S Sigma Models Described Through Hypergeometric Orthogonal Polynomials</title><author>Crampe, N ; Grundland, A M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22945122333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Euclidean geometry</topic><topic>Exact solutions</topic><topic>Polynomials</topic><topic>Riemann manifold</topic><topic>Submerging</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crampe, N</creatorcontrib><creatorcontrib>Grundland, A M</creatorcontrib><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crampe, N</au><au>Grundland, A M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>C P 2 S Sigma Models Described Through Hypergeometric Orthogonal Polynomials</atitle><jtitle>Annales Henri Poincaré</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>20</volume><issue>10</issue><spage>3365</spage><epage>3387</epage><pages>3365-3387</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>The main objective of this paper is to establish a new connection between the Hermitian rank-1 projector solutions of the Euclidean CP2S sigma model in two dimensions and the particular hypergeometric orthogonal polynomials called Krawtchouk polynomials. We show that any Veronese subsequent analytical solutions of the CP2S model, defined on the Riemann sphere and having a finite action, can be explicitly parametrized in terms of these polynomials. We apply these results to the analysis of surfaces associated with CP2S models defined using the generalized Weierstrass formula for immersion. We show that these surfaces are homeomorphic to spheres in the su(2s+1) algebra and express several other geometrical characteristics in terms of the Krawtchouk polynomials. Finally, a connection between the su(2) spin-s representation and the CP2S model is explored in detail.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00023-019-00830-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 1424-0637
ispartof Annales Henri Poincaré, 2019-01, Vol.20 (10), p.3365-3387
issn 1424-0637
1424-0661
language eng
recordid cdi_proquest_journals_2294512233
source Springer Nature - Complete Springer Journals
subjects Euclidean geometry
Exact solutions
Polynomials
Riemann manifold
Submerging
Two dimensional models
title C P 2 S Sigma Models Described Through Hypergeometric Orthogonal Polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A02%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=C%20P%202%20S%20Sigma%20Models%20Described%20Through%20Hypergeometric%20Orthogonal%20Polynomials&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Crampe,%20N&rft.date=2019-01-01&rft.volume=20&rft.issue=10&rft.spage=3365&rft.epage=3387&rft.pages=3365-3387&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-019-00830-2&rft_dat=%3Cproquest%3E2294512233%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2294512233&rft_id=info:pmid/&rfr_iscdi=true