Wave scattering by a periodic perturbation: embedded Rayleigh–Bloch modes and resonances

The scattering of quasiperiodic waves for a two-dimensional Helmholtz equation with a constant refractive index perturbed by a function which is periodic in one direction and of finite support in the other is considered. The scattering problem is uniquely solvable for almost all frequencies and form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2019-10, Vol.70 (5), p.1-27, Article 154
Hauptverfasser: Zhevandrov, P., Merzon, A., Romero Rodríguez, M. I., De la Paz Méndez, J. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 5
container_start_page 1
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 70
creator Zhevandrov, P.
Merzon, A.
Romero Rodríguez, M. I.
De la Paz Méndez, J. E.
description The scattering of quasiperiodic waves for a two-dimensional Helmholtz equation with a constant refractive index perturbed by a function which is periodic in one direction and of finite support in the other is considered. The scattering problem is uniquely solvable for almost all frequencies and formulas of Breit–Wigner and Fano type for the reflection and transmission coefficients are obtained in a neighborhood of the resonance (a pole of the reflection coefficient). We indicate also the values of the parameters involved which provide total transmission and reflection. For some exceptional frequencies and perturbations (when the imaginary part of the resonance vanishes) the scattering problem is not uniquely solvable and in the latter case there exist embedded Rayleigh–Bloch modes whose frequencies are explicitly calculated in terms of infinite convergent series in powers of the small parameter characterizing the magnitude of the perturbation.
doi_str_mv 10.1007/s00033-019-1198-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2294512215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2294512215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-2fd03ed417124657917e45dd6dcba244985fe910c472f095d1dceb9083418ca13</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYfwN2A69F7J5Mm406Lf1AQRBHcDJOZmzalTepMKnTnO_iGPokJEVy5umdxvnPhY-wU4RwBsosIAEkiALVA1LnI99gIlQShIdH7bASglJAySw_ZUYzLrp0hJCP29mo_iEdn25ZCVc95seOWb7rc-Mr1od2GwrZVU19yWhfkPXn-ZHcrquaL78-v61XjFnzdeIrc1p4Hik1ta0fxmB2UdhXp5PeO2cvtzfP0Xswe7x6mVzPh5CRvhSw9JOQVZijVJM00ZqRS7yfeFVYqpfO0JI3gVCZL0KlH76jQkCcKc2cxGbOzYXcTmvctxdYsm22ou5dGSq1SlBLTroVDy4UmxkCl2YRqbcPOIJheoRkUmk6h6RWavGPkwMRN74bC3_L_0A_arnSL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294512215</pqid></control><display><type>article</type><title>Wave scattering by a periodic perturbation: embedded Rayleigh–Bloch modes and resonances</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhevandrov, P. ; Merzon, A. ; Romero Rodríguez, M. I. ; De la Paz Méndez, J. E.</creator><creatorcontrib>Zhevandrov, P. ; Merzon, A. ; Romero Rodríguez, M. I. ; De la Paz Méndez, J. E.</creatorcontrib><description>The scattering of quasiperiodic waves for a two-dimensional Helmholtz equation with a constant refractive index perturbed by a function which is periodic in one direction and of finite support in the other is considered. The scattering problem is uniquely solvable for almost all frequencies and formulas of Breit–Wigner and Fano type for the reflection and transmission coefficients are obtained in a neighborhood of the resonance (a pole of the reflection coefficient). We indicate also the values of the parameters involved which provide total transmission and reflection. For some exceptional frequencies and perturbations (when the imaginary part of the resonance vanishes) the scattering problem is not uniquely solvable and in the latter case there exist embedded Rayleigh–Bloch modes whose frequencies are explicitly calculated in terms of infinite convergent series in powers of the small parameter characterizing the magnitude of the perturbation.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-019-1198-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Engineering ; Helmholtz equations ; Mathematical analysis ; Mathematical Methods in Physics ; Parameters ; Periodic variations ; Perturbation ; Reflectance ; Reflection ; Refractivity ; Resonance scattering ; Theoretical and Applied Mechanics ; Wave scattering</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2019-10, Vol.70 (5), p.1-27, Article 154</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-2fd03ed417124657917e45dd6dcba244985fe910c472f095d1dceb9083418ca13</cites><orcidid>0000-0002-2916-9884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-019-1198-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-019-1198-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhevandrov, P.</creatorcontrib><creatorcontrib>Merzon, A.</creatorcontrib><creatorcontrib>Romero Rodríguez, M. I.</creatorcontrib><creatorcontrib>De la Paz Méndez, J. E.</creatorcontrib><title>Wave scattering by a periodic perturbation: embedded Rayleigh–Bloch modes and resonances</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>The scattering of quasiperiodic waves for a two-dimensional Helmholtz equation with a constant refractive index perturbed by a function which is periodic in one direction and of finite support in the other is considered. The scattering problem is uniquely solvable for almost all frequencies and formulas of Breit–Wigner and Fano type for the reflection and transmission coefficients are obtained in a neighborhood of the resonance (a pole of the reflection coefficient). We indicate also the values of the parameters involved which provide total transmission and reflection. For some exceptional frequencies and perturbations (when the imaginary part of the resonance vanishes) the scattering problem is not uniquely solvable and in the latter case there exist embedded Rayleigh–Bloch modes whose frequencies are explicitly calculated in terms of infinite convergent series in powers of the small parameter characterizing the magnitude of the perturbation.</description><subject>Engineering</subject><subject>Helmholtz equations</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Parameters</subject><subject>Periodic variations</subject><subject>Perturbation</subject><subject>Reflectance</subject><subject>Reflection</subject><subject>Refractivity</subject><subject>Resonance scattering</subject><subject>Theoretical and Applied Mechanics</subject><subject>Wave scattering</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYfwN2A69F7J5Mm406Lf1AQRBHcDJOZmzalTepMKnTnO_iGPokJEVy5umdxvnPhY-wU4RwBsosIAEkiALVA1LnI99gIlQShIdH7bASglJAySw_ZUYzLrp0hJCP29mo_iEdn25ZCVc95seOWb7rc-Mr1od2GwrZVU19yWhfkPXn-ZHcrquaL78-v61XjFnzdeIrc1p4Hik1ta0fxmB2UdhXp5PeO2cvtzfP0Xswe7x6mVzPh5CRvhSw9JOQVZijVJM00ZqRS7yfeFVYqpfO0JI3gVCZL0KlH76jQkCcKc2cxGbOzYXcTmvctxdYsm22ou5dGSq1SlBLTroVDy4UmxkCl2YRqbcPOIJheoRkUmk6h6RWavGPkwMRN74bC3_L_0A_arnSL</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Zhevandrov, P.</creator><creator>Merzon, A.</creator><creator>Romero Rodríguez, M. I.</creator><creator>De la Paz Méndez, J. E.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2916-9884</orcidid></search><sort><creationdate>20191001</creationdate><title>Wave scattering by a periodic perturbation: embedded Rayleigh–Bloch modes and resonances</title><author>Zhevandrov, P. ; Merzon, A. ; Romero Rodríguez, M. I. ; De la Paz Méndez, J. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-2fd03ed417124657917e45dd6dcba244985fe910c472f095d1dceb9083418ca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Engineering</topic><topic>Helmholtz equations</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Parameters</topic><topic>Periodic variations</topic><topic>Perturbation</topic><topic>Reflectance</topic><topic>Reflection</topic><topic>Refractivity</topic><topic>Resonance scattering</topic><topic>Theoretical and Applied Mechanics</topic><topic>Wave scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhevandrov, P.</creatorcontrib><creatorcontrib>Merzon, A.</creatorcontrib><creatorcontrib>Romero Rodríguez, M. I.</creatorcontrib><creatorcontrib>De la Paz Méndez, J. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhevandrov, P.</au><au>Merzon, A.</au><au>Romero Rodríguez, M. I.</au><au>De la Paz Méndez, J. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave scattering by a periodic perturbation: embedded Rayleigh–Bloch modes and resonances</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>70</volume><issue>5</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><artnum>154</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>The scattering of quasiperiodic waves for a two-dimensional Helmholtz equation with a constant refractive index perturbed by a function which is periodic in one direction and of finite support in the other is considered. The scattering problem is uniquely solvable for almost all frequencies and formulas of Breit–Wigner and Fano type for the reflection and transmission coefficients are obtained in a neighborhood of the resonance (a pole of the reflection coefficient). We indicate also the values of the parameters involved which provide total transmission and reflection. For some exceptional frequencies and perturbations (when the imaginary part of the resonance vanishes) the scattering problem is not uniquely solvable and in the latter case there exist embedded Rayleigh–Bloch modes whose frequencies are explicitly calculated in terms of infinite convergent series in powers of the small parameter characterizing the magnitude of the perturbation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-019-1198-8</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-2916-9884</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2019-10, Vol.70 (5), p.1-27, Article 154
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_2294512215
source SpringerLink Journals - AutoHoldings
subjects Engineering
Helmholtz equations
Mathematical analysis
Mathematical Methods in Physics
Parameters
Periodic variations
Perturbation
Reflectance
Reflection
Refractivity
Resonance scattering
Theoretical and Applied Mechanics
Wave scattering
title Wave scattering by a periodic perturbation: embedded Rayleigh–Bloch modes and resonances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%20scattering%20by%20a%20periodic%20perturbation:%20embedded%20Rayleigh%E2%80%93Bloch%20modes%20and%20resonances&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Zhevandrov,%20P.&rft.date=2019-10-01&rft.volume=70&rft.issue=5&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.artnum=154&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-019-1198-8&rft_dat=%3Cproquest_cross%3E2294512215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2294512215&rft_id=info:pmid/&rfr_iscdi=true