Wave scattering by a periodic perturbation: embedded Rayleigh–Bloch modes and resonances
The scattering of quasiperiodic waves for a two-dimensional Helmholtz equation with a constant refractive index perturbed by a function which is periodic in one direction and of finite support in the other is considered. The scattering problem is uniquely solvable for almost all frequencies and form...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2019-10, Vol.70 (5), p.1-27, Article 154 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 70 |
creator | Zhevandrov, P. Merzon, A. Romero Rodríguez, M. I. De la Paz Méndez, J. E. |
description | The scattering of quasiperiodic waves for a two-dimensional Helmholtz equation with a constant refractive index perturbed by a function which is periodic in one direction and of finite support in the other is considered. The scattering problem is uniquely solvable for almost all frequencies and formulas of Breit–Wigner and Fano type for the reflection and transmission coefficients are obtained in a neighborhood of the resonance (a pole of the reflection coefficient). We indicate also the values of the parameters involved which provide total transmission and reflection. For some exceptional frequencies and perturbations (when the imaginary part of the resonance vanishes) the scattering problem is not uniquely solvable and in the latter case there exist embedded Rayleigh–Bloch modes whose frequencies are explicitly calculated in terms of infinite convergent series in powers of the small parameter characterizing the magnitude of the perturbation. |
doi_str_mv | 10.1007/s00033-019-1198-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2294512215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2294512215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-2fd03ed417124657917e45dd6dcba244985fe910c472f095d1dceb9083418ca13</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYfwN2A69F7J5Mm406Lf1AQRBHcDJOZmzalTepMKnTnO_iGPokJEVy5umdxvnPhY-wU4RwBsosIAEkiALVA1LnI99gIlQShIdH7bASglJAySw_ZUYzLrp0hJCP29mo_iEdn25ZCVc95seOWb7rc-Mr1od2GwrZVU19yWhfkPXn-ZHcrquaL78-v61XjFnzdeIrc1p4Hik1ta0fxmB2UdhXp5PeO2cvtzfP0Xswe7x6mVzPh5CRvhSw9JOQVZijVJM00ZqRS7yfeFVYqpfO0JI3gVCZL0KlH76jQkCcKc2cxGbOzYXcTmvctxdYsm22ou5dGSq1SlBLTroVDy4UmxkCl2YRqbcPOIJheoRkUmk6h6RWavGPkwMRN74bC3_L_0A_arnSL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294512215</pqid></control><display><type>article</type><title>Wave scattering by a periodic perturbation: embedded Rayleigh–Bloch modes and resonances</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhevandrov, P. ; Merzon, A. ; Romero Rodríguez, M. I. ; De la Paz Méndez, J. E.</creator><creatorcontrib>Zhevandrov, P. ; Merzon, A. ; Romero Rodríguez, M. I. ; De la Paz Méndez, J. E.</creatorcontrib><description>The scattering of quasiperiodic waves for a two-dimensional Helmholtz equation with a constant refractive index perturbed by a function which is periodic in one direction and of finite support in the other is considered. The scattering problem is uniquely solvable for almost all frequencies and formulas of Breit–Wigner and Fano type for the reflection and transmission coefficients are obtained in a neighborhood of the resonance (a pole of the reflection coefficient). We indicate also the values of the parameters involved which provide total transmission and reflection. For some exceptional frequencies and perturbations (when the imaginary part of the resonance vanishes) the scattering problem is not uniquely solvable and in the latter case there exist embedded Rayleigh–Bloch modes whose frequencies are explicitly calculated in terms of infinite convergent series in powers of the small parameter characterizing the magnitude of the perturbation.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-019-1198-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Engineering ; Helmholtz equations ; Mathematical analysis ; Mathematical Methods in Physics ; Parameters ; Periodic variations ; Perturbation ; Reflectance ; Reflection ; Refractivity ; Resonance scattering ; Theoretical and Applied Mechanics ; Wave scattering</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2019-10, Vol.70 (5), p.1-27, Article 154</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-2fd03ed417124657917e45dd6dcba244985fe910c472f095d1dceb9083418ca13</cites><orcidid>0000-0002-2916-9884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-019-1198-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-019-1198-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhevandrov, P.</creatorcontrib><creatorcontrib>Merzon, A.</creatorcontrib><creatorcontrib>Romero Rodríguez, M. I.</creatorcontrib><creatorcontrib>De la Paz Méndez, J. E.</creatorcontrib><title>Wave scattering by a periodic perturbation: embedded Rayleigh–Bloch modes and resonances</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>The scattering of quasiperiodic waves for a two-dimensional Helmholtz equation with a constant refractive index perturbed by a function which is periodic in one direction and of finite support in the other is considered. The scattering problem is uniquely solvable for almost all frequencies and formulas of Breit–Wigner and Fano type for the reflection and transmission coefficients are obtained in a neighborhood of the resonance (a pole of the reflection coefficient). We indicate also the values of the parameters involved which provide total transmission and reflection. For some exceptional frequencies and perturbations (when the imaginary part of the resonance vanishes) the scattering problem is not uniquely solvable and in the latter case there exist embedded Rayleigh–Bloch modes whose frequencies are explicitly calculated in terms of infinite convergent series in powers of the small parameter characterizing the magnitude of the perturbation.</description><subject>Engineering</subject><subject>Helmholtz equations</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Parameters</subject><subject>Periodic variations</subject><subject>Perturbation</subject><subject>Reflectance</subject><subject>Reflection</subject><subject>Refractivity</subject><subject>Resonance scattering</subject><subject>Theoretical and Applied Mechanics</subject><subject>Wave scattering</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYfwN2A69F7J5Mm406Lf1AQRBHcDJOZmzalTepMKnTnO_iGPokJEVy5umdxvnPhY-wU4RwBsosIAEkiALVA1LnI99gIlQShIdH7bASglJAySw_ZUYzLrp0hJCP29mo_iEdn25ZCVc95seOWb7rc-Mr1od2GwrZVU19yWhfkPXn-ZHcrquaL78-v61XjFnzdeIrc1p4Hik1ta0fxmB2UdhXp5PeO2cvtzfP0Xswe7x6mVzPh5CRvhSw9JOQVZijVJM00ZqRS7yfeFVYqpfO0JI3gVCZL0KlH76jQkCcKc2cxGbOzYXcTmvctxdYsm22ou5dGSq1SlBLTroVDy4UmxkCl2YRqbcPOIJheoRkUmk6h6RWavGPkwMRN74bC3_L_0A_arnSL</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Zhevandrov, P.</creator><creator>Merzon, A.</creator><creator>Romero Rodríguez, M. I.</creator><creator>De la Paz Méndez, J. E.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2916-9884</orcidid></search><sort><creationdate>20191001</creationdate><title>Wave scattering by a periodic perturbation: embedded Rayleigh–Bloch modes and resonances</title><author>Zhevandrov, P. ; Merzon, A. ; Romero Rodríguez, M. I. ; De la Paz Méndez, J. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-2fd03ed417124657917e45dd6dcba244985fe910c472f095d1dceb9083418ca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Engineering</topic><topic>Helmholtz equations</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Parameters</topic><topic>Periodic variations</topic><topic>Perturbation</topic><topic>Reflectance</topic><topic>Reflection</topic><topic>Refractivity</topic><topic>Resonance scattering</topic><topic>Theoretical and Applied Mechanics</topic><topic>Wave scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhevandrov, P.</creatorcontrib><creatorcontrib>Merzon, A.</creatorcontrib><creatorcontrib>Romero Rodríguez, M. I.</creatorcontrib><creatorcontrib>De la Paz Méndez, J. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhevandrov, P.</au><au>Merzon, A.</au><au>Romero Rodríguez, M. I.</au><au>De la Paz Méndez, J. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave scattering by a periodic perturbation: embedded Rayleigh–Bloch modes and resonances</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>70</volume><issue>5</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><artnum>154</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>The scattering of quasiperiodic waves for a two-dimensional Helmholtz equation with a constant refractive index perturbed by a function which is periodic in one direction and of finite support in the other is considered. The scattering problem is uniquely solvable for almost all frequencies and formulas of Breit–Wigner and Fano type for the reflection and transmission coefficients are obtained in a neighborhood of the resonance (a pole of the reflection coefficient). We indicate also the values of the parameters involved which provide total transmission and reflection. For some exceptional frequencies and perturbations (when the imaginary part of the resonance vanishes) the scattering problem is not uniquely solvable and in the latter case there exist embedded Rayleigh–Bloch modes whose frequencies are explicitly calculated in terms of infinite convergent series in powers of the small parameter characterizing the magnitude of the perturbation.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-019-1198-8</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-2916-9884</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2019-10, Vol.70 (5), p.1-27, Article 154 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_2294512215 |
source | SpringerLink Journals - AutoHoldings |
subjects | Engineering Helmholtz equations Mathematical analysis Mathematical Methods in Physics Parameters Periodic variations Perturbation Reflectance Reflection Refractivity Resonance scattering Theoretical and Applied Mechanics Wave scattering |
title | Wave scattering by a periodic perturbation: embedded Rayleigh–Bloch modes and resonances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%20scattering%20by%20a%20periodic%20perturbation:%20embedded%20Rayleigh%E2%80%93Bloch%20modes%20and%20resonances&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Zhevandrov,%20P.&rft.date=2019-10-01&rft.volume=70&rft.issue=5&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.artnum=154&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-019-1198-8&rft_dat=%3Cproquest_cross%3E2294512215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2294512215&rft_id=info:pmid/&rfr_iscdi=true |