Optimal control problem of the two-dimensional modified anomalous subdiffusion equation with discontinuous Galerkin approximation
In this paper, we consider an optimal control problem (OCP) governed by a modified anomalous subdiffusion equation with box constraints on the control. We apply space–time discontinuous Galerkin method to discretize the problem. Specifically, symmetric interior penalty Galerkin method and piecewise...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2019-09, Vol.78 (6), p.2127-2146 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2146 |
---|---|
container_issue | 6 |
container_start_page | 2127 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 78 |
creator | Akman Yıldız, Tuğba |
description | In this paper, we consider an optimal control problem (OCP) governed by a modified anomalous subdiffusion equation with box constraints on the control. We apply space–time discontinuous Galerkin method to discretize the problem. Specifically, symmetric interior penalty Galerkin method and piecewise discontinuous constant temporal approximations are used. Then, we discuss the equivalence of optimize then discretize and discretize then optimize approaches in a general setting. We derive stability and convergence analysis for the fully discrete problem. At the end, we present some numerical results to measure the numerical rate of convergence. |
doi_str_mv | 10.1016/j.camwa.2019.05.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2294473749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122119302858</els_id><sourcerecordid>2294473749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-7eeaebc7073f06cc1a47df2f1c127cc26428397905beb244fb172446f1decce13</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwC1gsMSfYThonAwOqoCAhdYHZcpyz6pDEqe1QGPnnOJSZ6U6n7927ewhdU5JSQovbNlWyP8iUEVqlZJUSxk7QgpY8S3hRlKdoQcqqTChj9BxdeN8SQvKMkQX63o7B9LLDyg7B2Q6PztYd9NhqHHaAw8Emjelh8MYOEettY7SBBsvBRpmdPPZTHWd6mgkM-0mGuTmYsMON8fNeM0wzuJEduHczYDlGl89oO5OX6EzLzsPVX12it8eH1_VT8rLdPK_vXxKV8SIkHEBCrTjhmSaFUlTmvNFMU0UZV4oVOSuzildkVUPN8lzXlMdSaNqAUkCzJbo57o3e-wl8EK2dXPzJC8aqPOcZz6tIZUdKOeu9Ay1GFw91X4ISMWctWvGbtZizFmQlYtZRdXdUQXzgw4ATXhkYFDTGgQqiseZf_Q8GXo03</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294473749</pqid></control><display><type>article</type><title>Optimal control problem of the two-dimensional modified anomalous subdiffusion equation with discontinuous Galerkin approximation</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Akman Yıldız, Tuğba</creator><creatorcontrib>Akman Yıldız, Tuğba</creatorcontrib><description>In this paper, we consider an optimal control problem (OCP) governed by a modified anomalous subdiffusion equation with box constraints on the control. We apply space–time discontinuous Galerkin method to discretize the problem. Specifically, symmetric interior penalty Galerkin method and piecewise discontinuous constant temporal approximations are used. Then, we discuss the equivalence of optimize then discretize and discretize then optimize approaches in a general setting. We derive stability and convergence analysis for the fully discrete problem. At the end, we present some numerical results to measure the numerical rate of convergence.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2019.05.022</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Convergence ; Discontinuous Galerkin method ; Galerkin method ; Modified anomalous subdiffusion equation ; Optimal control ; Optimal control problem ; Optimization ; Riemann–Liouville fractional derivative ; Stability analysis</subject><ispartof>Computers & mathematics with applications (1987), 2019-09, Vol.78 (6), p.2127-2146</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-7eeaebc7073f06cc1a47df2f1c127cc26428397905beb244fb172446f1decce13</citedby><cites>FETCH-LOGICAL-c376t-7eeaebc7073f06cc1a47df2f1c127cc26428397905beb244fb172446f1decce13</cites><orcidid>0000-0003-1206-2287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122119302858$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Akman Yıldız, Tuğba</creatorcontrib><title>Optimal control problem of the two-dimensional modified anomalous subdiffusion equation with discontinuous Galerkin approximation</title><title>Computers & mathematics with applications (1987)</title><description>In this paper, we consider an optimal control problem (OCP) governed by a modified anomalous subdiffusion equation with box constraints on the control. We apply space–time discontinuous Galerkin method to discretize the problem. Specifically, symmetric interior penalty Galerkin method and piecewise discontinuous constant temporal approximations are used. Then, we discuss the equivalence of optimize then discretize and discretize then optimize approaches in a general setting. We derive stability and convergence analysis for the fully discrete problem. At the end, we present some numerical results to measure the numerical rate of convergence.</description><subject>Convergence</subject><subject>Discontinuous Galerkin method</subject><subject>Galerkin method</subject><subject>Modified anomalous subdiffusion equation</subject><subject>Optimal control</subject><subject>Optimal control problem</subject><subject>Optimization</subject><subject>Riemann–Liouville fractional derivative</subject><subject>Stability analysis</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwC1gsMSfYThonAwOqoCAhdYHZcpyz6pDEqe1QGPnnOJSZ6U6n7927ewhdU5JSQovbNlWyP8iUEVqlZJUSxk7QgpY8S3hRlKdoQcqqTChj9BxdeN8SQvKMkQX63o7B9LLDyg7B2Q6PztYd9NhqHHaAw8Emjelh8MYOEettY7SBBsvBRpmdPPZTHWd6mgkM-0mGuTmYsMON8fNeM0wzuJEduHczYDlGl89oO5OX6EzLzsPVX12it8eH1_VT8rLdPK_vXxKV8SIkHEBCrTjhmSaFUlTmvNFMU0UZV4oVOSuzildkVUPN8lzXlMdSaNqAUkCzJbo57o3e-wl8EK2dXPzJC8aqPOcZz6tIZUdKOeu9Ay1GFw91X4ISMWctWvGbtZizFmQlYtZRdXdUQXzgw4ATXhkYFDTGgQqiseZf_Q8GXo03</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Akman Yıldız, Tuğba</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1206-2287</orcidid></search><sort><creationdate>20190915</creationdate><title>Optimal control problem of the two-dimensional modified anomalous subdiffusion equation with discontinuous Galerkin approximation</title><author>Akman Yıldız, Tuğba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-7eeaebc7073f06cc1a47df2f1c127cc26428397905beb244fb172446f1decce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Convergence</topic><topic>Discontinuous Galerkin method</topic><topic>Galerkin method</topic><topic>Modified anomalous subdiffusion equation</topic><topic>Optimal control</topic><topic>Optimal control problem</topic><topic>Optimization</topic><topic>Riemann–Liouville fractional derivative</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akman Yıldız, Tuğba</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akman Yıldız, Tuğba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control problem of the two-dimensional modified anomalous subdiffusion equation with discontinuous Galerkin approximation</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2019-09-15</date><risdate>2019</risdate><volume>78</volume><issue>6</issue><spage>2127</spage><epage>2146</epage><pages>2127-2146</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, we consider an optimal control problem (OCP) governed by a modified anomalous subdiffusion equation with box constraints on the control. We apply space–time discontinuous Galerkin method to discretize the problem. Specifically, symmetric interior penalty Galerkin method and piecewise discontinuous constant temporal approximations are used. Then, we discuss the equivalence of optimize then discretize and discretize then optimize approaches in a general setting. We derive stability and convergence analysis for the fully discrete problem. At the end, we present some numerical results to measure the numerical rate of convergence.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2019.05.022</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1206-2287</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2019-09, Vol.78 (6), p.2127-2146 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_journals_2294473749 |
source | ScienceDirect Journals (5 years ago - present); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Convergence Discontinuous Galerkin method Galerkin method Modified anomalous subdiffusion equation Optimal control Optimal control problem Optimization Riemann–Liouville fractional derivative Stability analysis |
title | Optimal control problem of the two-dimensional modified anomalous subdiffusion equation with discontinuous Galerkin approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20problem%20of%20the%20two-dimensional%20modified%20anomalous%20subdiffusion%20equation%20with%20discontinuous%20Galerkin%20approximation&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Akman%20Y%C4%B1ld%C4%B1z,%20Tu%C4%9Fba&rft.date=2019-09-15&rft.volume=78&rft.issue=6&rft.spage=2127&rft.epage=2146&rft.pages=2127-2146&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2019.05.022&rft_dat=%3Cproquest_cross%3E2294473749%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2294473749&rft_id=info:pmid/&rft_els_id=S0898122119302858&rfr_iscdi=true |