Optimal control problem of the two-dimensional modified anomalous subdiffusion equation with discontinuous Galerkin approximation

In this paper, we consider an optimal control problem (OCP) governed by a modified anomalous subdiffusion equation with box constraints on the control. We apply space–time discontinuous Galerkin method to discretize the problem. Specifically, symmetric interior penalty Galerkin method and piecewise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2019-09, Vol.78 (6), p.2127-2146
1. Verfasser: Akman Yıldız, Tuğba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2146
container_issue 6
container_start_page 2127
container_title Computers & mathematics with applications (1987)
container_volume 78
creator Akman Yıldız, Tuğba
description In this paper, we consider an optimal control problem (OCP) governed by a modified anomalous subdiffusion equation with box constraints on the control. We apply space–time discontinuous Galerkin method to discretize the problem. Specifically, symmetric interior penalty Galerkin method and piecewise discontinuous constant temporal approximations are used. Then, we discuss the equivalence of optimize then discretize and discretize then optimize approaches in a general setting. We derive stability and convergence analysis for the fully discrete problem. At the end, we present some numerical results to measure the numerical rate of convergence.
doi_str_mv 10.1016/j.camwa.2019.05.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2294473749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122119302858</els_id><sourcerecordid>2294473749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-7eeaebc7073f06cc1a47df2f1c127cc26428397905beb244fb172446f1decce13</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwC1gsMSfYThonAwOqoCAhdYHZcpyz6pDEqe1QGPnnOJSZ6U6n7927ewhdU5JSQovbNlWyP8iUEVqlZJUSxk7QgpY8S3hRlKdoQcqqTChj9BxdeN8SQvKMkQX63o7B9LLDyg7B2Q6PztYd9NhqHHaAw8Emjelh8MYOEettY7SBBsvBRpmdPPZTHWd6mgkM-0mGuTmYsMON8fNeM0wzuJEduHczYDlGl89oO5OX6EzLzsPVX12it8eH1_VT8rLdPK_vXxKV8SIkHEBCrTjhmSaFUlTmvNFMU0UZV4oVOSuzildkVUPN8lzXlMdSaNqAUkCzJbo57o3e-wl8EK2dXPzJC8aqPOcZz6tIZUdKOeu9Ay1GFw91X4ISMWctWvGbtZizFmQlYtZRdXdUQXzgw4ATXhkYFDTGgQqiseZf_Q8GXo03</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294473749</pqid></control><display><type>article</type><title>Optimal control problem of the two-dimensional modified anomalous subdiffusion equation with discontinuous Galerkin approximation</title><source>ScienceDirect Journals (5 years ago - present)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Akman Yıldız, Tuğba</creator><creatorcontrib>Akman Yıldız, Tuğba</creatorcontrib><description>In this paper, we consider an optimal control problem (OCP) governed by a modified anomalous subdiffusion equation with box constraints on the control. We apply space–time discontinuous Galerkin method to discretize the problem. Specifically, symmetric interior penalty Galerkin method and piecewise discontinuous constant temporal approximations are used. Then, we discuss the equivalence of optimize then discretize and discretize then optimize approaches in a general setting. We derive stability and convergence analysis for the fully discrete problem. At the end, we present some numerical results to measure the numerical rate of convergence.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2019.05.022</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Convergence ; Discontinuous Galerkin method ; Galerkin method ; Modified anomalous subdiffusion equation ; Optimal control ; Optimal control problem ; Optimization ; Riemann–Liouville fractional derivative ; Stability analysis</subject><ispartof>Computers &amp; mathematics with applications (1987), 2019-09, Vol.78 (6), p.2127-2146</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-7eeaebc7073f06cc1a47df2f1c127cc26428397905beb244fb172446f1decce13</citedby><cites>FETCH-LOGICAL-c376t-7eeaebc7073f06cc1a47df2f1c127cc26428397905beb244fb172446f1decce13</cites><orcidid>0000-0003-1206-2287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122119302858$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Akman Yıldız, Tuğba</creatorcontrib><title>Optimal control problem of the two-dimensional modified anomalous subdiffusion equation with discontinuous Galerkin approximation</title><title>Computers &amp; mathematics with applications (1987)</title><description>In this paper, we consider an optimal control problem (OCP) governed by a modified anomalous subdiffusion equation with box constraints on the control. We apply space–time discontinuous Galerkin method to discretize the problem. Specifically, symmetric interior penalty Galerkin method and piecewise discontinuous constant temporal approximations are used. Then, we discuss the equivalence of optimize then discretize and discretize then optimize approaches in a general setting. We derive stability and convergence analysis for the fully discrete problem. At the end, we present some numerical results to measure the numerical rate of convergence.</description><subject>Convergence</subject><subject>Discontinuous Galerkin method</subject><subject>Galerkin method</subject><subject>Modified anomalous subdiffusion equation</subject><subject>Optimal control</subject><subject>Optimal control problem</subject><subject>Optimization</subject><subject>Riemann–Liouville fractional derivative</subject><subject>Stability analysis</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwC1gsMSfYThonAwOqoCAhdYHZcpyz6pDEqe1QGPnnOJSZ6U6n7927ewhdU5JSQovbNlWyP8iUEVqlZJUSxk7QgpY8S3hRlKdoQcqqTChj9BxdeN8SQvKMkQX63o7B9LLDyg7B2Q6PztYd9NhqHHaAw8Emjelh8MYOEettY7SBBsvBRpmdPPZTHWd6mgkM-0mGuTmYsMON8fNeM0wzuJEduHczYDlGl89oO5OX6EzLzsPVX12it8eH1_VT8rLdPK_vXxKV8SIkHEBCrTjhmSaFUlTmvNFMU0UZV4oVOSuzildkVUPN8lzXlMdSaNqAUkCzJbo57o3e-wl8EK2dXPzJC8aqPOcZz6tIZUdKOeu9Ay1GFw91X4ISMWctWvGbtZizFmQlYtZRdXdUQXzgw4ATXhkYFDTGgQqiseZf_Q8GXo03</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Akman Yıldız, Tuğba</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1206-2287</orcidid></search><sort><creationdate>20190915</creationdate><title>Optimal control problem of the two-dimensional modified anomalous subdiffusion equation with discontinuous Galerkin approximation</title><author>Akman Yıldız, Tuğba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-7eeaebc7073f06cc1a47df2f1c127cc26428397905beb244fb172446f1decce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Convergence</topic><topic>Discontinuous Galerkin method</topic><topic>Galerkin method</topic><topic>Modified anomalous subdiffusion equation</topic><topic>Optimal control</topic><topic>Optimal control problem</topic><topic>Optimization</topic><topic>Riemann–Liouville fractional derivative</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akman Yıldız, Tuğba</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akman Yıldız, Tuğba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal control problem of the two-dimensional modified anomalous subdiffusion equation with discontinuous Galerkin approximation</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2019-09-15</date><risdate>2019</risdate><volume>78</volume><issue>6</issue><spage>2127</spage><epage>2146</epage><pages>2127-2146</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, we consider an optimal control problem (OCP) governed by a modified anomalous subdiffusion equation with box constraints on the control. We apply space–time discontinuous Galerkin method to discretize the problem. Specifically, symmetric interior penalty Galerkin method and piecewise discontinuous constant temporal approximations are used. Then, we discuss the equivalence of optimize then discretize and discretize then optimize approaches in a general setting. We derive stability and convergence analysis for the fully discrete problem. At the end, we present some numerical results to measure the numerical rate of convergence.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2019.05.022</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1206-2287</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2019-09, Vol.78 (6), p.2127-2146
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_2294473749
source ScienceDirect Journals (5 years ago - present); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Convergence
Discontinuous Galerkin method
Galerkin method
Modified anomalous subdiffusion equation
Optimal control
Optimal control problem
Optimization
Riemann–Liouville fractional derivative
Stability analysis
title Optimal control problem of the two-dimensional modified anomalous subdiffusion equation with discontinuous Galerkin approximation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A00%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20control%20problem%20of%20the%20two-dimensional%20modified%20anomalous%20subdiffusion%20equation%20with%20discontinuous%20Galerkin%20approximation&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Akman%20Y%C4%B1ld%C4%B1z,%20Tu%C4%9Fba&rft.date=2019-09-15&rft.volume=78&rft.issue=6&rft.spage=2127&rft.epage=2146&rft.pages=2127-2146&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2019.05.022&rft_dat=%3Cproquest_cross%3E2294473749%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2294473749&rft_id=info:pmid/&rft_els_id=S0898122119302858&rfr_iscdi=true