Transient and steady-state readout of nanowire gas sensors in the presence of low-frequency noise

[Display omitted] •Comparison of transient and steady-state gas sensing in the presence of 1/f noise.•Theoretical analysis of the SNR of chemical sensing in the presence of 1/f noise.•Experimental characterization of transient response of carbon nanotube NO2 sensors.•Criteria are derived for when tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2019-10, Vol.297, p.126674, Article 126674
Hauptverfasser: Satterthwaite, Peter F., Eberle, Sebastian, Nedelcu, Stefan, Roman, Cosmin, Hierold, Christofer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 126674
container_title Sensors and actuators. B, Chemical
container_volume 297
creator Satterthwaite, Peter F.
Eberle, Sebastian
Nedelcu, Stefan
Roman, Cosmin
Hierold, Christofer
description [Display omitted] •Comparison of transient and steady-state gas sensing in the presence of 1/f noise.•Theoretical analysis of the SNR of chemical sensing in the presence of 1/f noise.•Experimental characterization of transient response of carbon nanotube NO2 sensors.•Criteria are derived for when transient or steady-state sensing is most suitable. Nanowire sensors show great promise in a variety of sensing applications due to their potential for high sensitivities. Practical nanowire sensor systems, however, are often limited by low-frequency, 1/f noise. This work presents theoretical and experimental results comparing the performance metrics of sensing schemes using transient and steady-state parameters in the presence of 1/f noise. Criteria are derived for when the considered transient or steady-state sensing schemes will have a better signal-to-noise ratio (SNR). The theoretical results for the SNR of these sensing schemes are applied to experimental data from carbon nanotube NO2 sensors. These data and theoretical results demonstrate that due to the Langmuir binding behavior of the sensor-analyte system, sensing using the considered transient parameters increases linearity and decreases response time relative to steady-state sensing. Noise analysis further shows that with current devices, transient sensing has a lower SNR relative to steady-state sensing, however this may change if functionalization is considered. The use of transient parameters also has the potential to reduce sensor drift due to 1/f noise, improving system stability. In addition to providing useful considerations towards the design of carbon nanotube gas sensors, these results are relevant towards understanding the SNR of other chemical and biological sensors limited by 1/f noise.
doi_str_mv 10.1016/j.snb.2019.126674
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2294472897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400519308743</els_id><sourcerecordid>2294472897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-987b2f400b64640adf3ff942de309ff7db5d9a8950d5c664991497a8a9ecd5d93</originalsourceid><addsrcrecordid>eNp9kE1PxCAQhonRxHX1B3gj8dwKlJYST2bjV7KJl_VMaAGlWWFlWM3-e9nUs6eZzLzvfDwIXVNSU0K726mGMNSMUFlT1nWCn6AF7UVTNUSIU7QgkrUVJ6Q9RxcAEyGENx1ZIL1JOoC3IWMdDIZstTlUkHW2OJU87jOODgcd4o9PFr9rwGADxATYB5w_LN4lWyqjPeq28adyyX7tS-GAQ_RgL9GZ01uwV39xid4eHzar52r9-vSyul9XIydtrmQvBubKhUPHO060cY1zkjNjGyKdE2ZojdS9bIlpx67jUlIuhe61tKMprWaJbua5uxTLfshqivsUykrFmORcsF6KoqKzakwRIFmndsl_6nRQlKgjSTWpQlIdSaqZZPHczR5bzv_2NikY_fFjU4iMWZno_3H_AhOufIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2294472897</pqid></control><display><type>article</type><title>Transient and steady-state readout of nanowire gas sensors in the presence of low-frequency noise</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Satterthwaite, Peter F. ; Eberle, Sebastian ; Nedelcu, Stefan ; Roman, Cosmin ; Hierold, Christofer</creator><creatorcontrib>Satterthwaite, Peter F. ; Eberle, Sebastian ; Nedelcu, Stefan ; Roman, Cosmin ; Hierold, Christofer</creatorcontrib><description>[Display omitted] •Comparison of transient and steady-state gas sensing in the presence of 1/f noise.•Theoretical analysis of the SNR of chemical sensing in the presence of 1/f noise.•Experimental characterization of transient response of carbon nanotube NO2 sensors.•Criteria are derived for when transient or steady-state sensing is most suitable. Nanowire sensors show great promise in a variety of sensing applications due to their potential for high sensitivities. Practical nanowire sensor systems, however, are often limited by low-frequency, 1/f noise. This work presents theoretical and experimental results comparing the performance metrics of sensing schemes using transient and steady-state parameters in the presence of 1/f noise. Criteria are derived for when the considered transient or steady-state sensing schemes will have a better signal-to-noise ratio (SNR). The theoretical results for the SNR of these sensing schemes are applied to experimental data from carbon nanotube NO2 sensors. These data and theoretical results demonstrate that due to the Langmuir binding behavior of the sensor-analyte system, sensing using the considered transient parameters increases linearity and decreases response time relative to steady-state sensing. Noise analysis further shows that with current devices, transient sensing has a lower SNR relative to steady-state sensing, however this may change if functionalization is considered. The use of transient parameters also has the potential to reduce sensor drift due to 1/f noise, improving system stability. In addition to providing useful considerations towards the design of carbon nanotube gas sensors, these results are relevant towards understanding the SNR of other chemical and biological sensors limited by 1/f noise.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2019.126674</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>1/f noise ; Carbon nanotubes ; Chemical sensors ; Detection ; Gas sensing ; Gas sensors ; Linearity ; Nanowire sensors ; Nanowires ; Nitrogen dioxide ; Noise ; Organic chemistry ; Parameters ; Performance measurement ; Response time ; Sensors ; Signal to noise ratio ; Steady state ; Systems stability ; Transient sensing</subject><ispartof>Sensors and actuators. B, Chemical, 2019-10, Vol.297, p.126674, Article 126674</ispartof><rights>2019 The Author(s)</rights><rights>Copyright Elsevier Science Ltd. Oct 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-987b2f400b64640adf3ff942de309ff7db5d9a8950d5c664991497a8a9ecd5d93</citedby><cites>FETCH-LOGICAL-c405t-987b2f400b64640adf3ff942de309ff7db5d9a8950d5c664991497a8a9ecd5d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2019.126674$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Satterthwaite, Peter F.</creatorcontrib><creatorcontrib>Eberle, Sebastian</creatorcontrib><creatorcontrib>Nedelcu, Stefan</creatorcontrib><creatorcontrib>Roman, Cosmin</creatorcontrib><creatorcontrib>Hierold, Christofer</creatorcontrib><title>Transient and steady-state readout of nanowire gas sensors in the presence of low-frequency noise</title><title>Sensors and actuators. B, Chemical</title><description>[Display omitted] •Comparison of transient and steady-state gas sensing in the presence of 1/f noise.•Theoretical analysis of the SNR of chemical sensing in the presence of 1/f noise.•Experimental characterization of transient response of carbon nanotube NO2 sensors.•Criteria are derived for when transient or steady-state sensing is most suitable. Nanowire sensors show great promise in a variety of sensing applications due to their potential for high sensitivities. Practical nanowire sensor systems, however, are often limited by low-frequency, 1/f noise. This work presents theoretical and experimental results comparing the performance metrics of sensing schemes using transient and steady-state parameters in the presence of 1/f noise. Criteria are derived for when the considered transient or steady-state sensing schemes will have a better signal-to-noise ratio (SNR). The theoretical results for the SNR of these sensing schemes are applied to experimental data from carbon nanotube NO2 sensors. These data and theoretical results demonstrate that due to the Langmuir binding behavior of the sensor-analyte system, sensing using the considered transient parameters increases linearity and decreases response time relative to steady-state sensing. Noise analysis further shows that with current devices, transient sensing has a lower SNR relative to steady-state sensing, however this may change if functionalization is considered. The use of transient parameters also has the potential to reduce sensor drift due to 1/f noise, improving system stability. In addition to providing useful considerations towards the design of carbon nanotube gas sensors, these results are relevant towards understanding the SNR of other chemical and biological sensors limited by 1/f noise.</description><subject>1/f noise</subject><subject>Carbon nanotubes</subject><subject>Chemical sensors</subject><subject>Detection</subject><subject>Gas sensing</subject><subject>Gas sensors</subject><subject>Linearity</subject><subject>Nanowire sensors</subject><subject>Nanowires</subject><subject>Nitrogen dioxide</subject><subject>Noise</subject><subject>Organic chemistry</subject><subject>Parameters</subject><subject>Performance measurement</subject><subject>Response time</subject><subject>Sensors</subject><subject>Signal to noise ratio</subject><subject>Steady state</subject><subject>Systems stability</subject><subject>Transient sensing</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PxCAQhonRxHX1B3gj8dwKlJYST2bjV7KJl_VMaAGlWWFlWM3-e9nUs6eZzLzvfDwIXVNSU0K726mGMNSMUFlT1nWCn6AF7UVTNUSIU7QgkrUVJ6Q9RxcAEyGENx1ZIL1JOoC3IWMdDIZstTlUkHW2OJU87jOODgcd4o9PFr9rwGADxATYB5w_LN4lWyqjPeq28adyyX7tS-GAQ_RgL9GZ01uwV39xid4eHzar52r9-vSyul9XIydtrmQvBubKhUPHO060cY1zkjNjGyKdE2ZojdS9bIlpx67jUlIuhe61tKMprWaJbua5uxTLfshqivsUykrFmORcsF6KoqKzakwRIFmndsl_6nRQlKgjSTWpQlIdSaqZZPHczR5bzv_2NikY_fFjU4iMWZno_3H_AhOufIw</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Satterthwaite, Peter F.</creator><creator>Eberle, Sebastian</creator><creator>Nedelcu, Stefan</creator><creator>Roman, Cosmin</creator><creator>Hierold, Christofer</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20191015</creationdate><title>Transient and steady-state readout of nanowire gas sensors in the presence of low-frequency noise</title><author>Satterthwaite, Peter F. ; Eberle, Sebastian ; Nedelcu, Stefan ; Roman, Cosmin ; Hierold, Christofer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-987b2f400b64640adf3ff942de309ff7db5d9a8950d5c664991497a8a9ecd5d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>1/f noise</topic><topic>Carbon nanotubes</topic><topic>Chemical sensors</topic><topic>Detection</topic><topic>Gas sensing</topic><topic>Gas sensors</topic><topic>Linearity</topic><topic>Nanowire sensors</topic><topic>Nanowires</topic><topic>Nitrogen dioxide</topic><topic>Noise</topic><topic>Organic chemistry</topic><topic>Parameters</topic><topic>Performance measurement</topic><topic>Response time</topic><topic>Sensors</topic><topic>Signal to noise ratio</topic><topic>Steady state</topic><topic>Systems stability</topic><topic>Transient sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satterthwaite, Peter F.</creatorcontrib><creatorcontrib>Eberle, Sebastian</creatorcontrib><creatorcontrib>Nedelcu, Stefan</creatorcontrib><creatorcontrib>Roman, Cosmin</creatorcontrib><creatorcontrib>Hierold, Christofer</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satterthwaite, Peter F.</au><au>Eberle, Sebastian</au><au>Nedelcu, Stefan</au><au>Roman, Cosmin</au><au>Hierold, Christofer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient and steady-state readout of nanowire gas sensors in the presence of low-frequency noise</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2019-10-15</date><risdate>2019</risdate><volume>297</volume><spage>126674</spage><pages>126674-</pages><artnum>126674</artnum><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>[Display omitted] •Comparison of transient and steady-state gas sensing in the presence of 1/f noise.•Theoretical analysis of the SNR of chemical sensing in the presence of 1/f noise.•Experimental characterization of transient response of carbon nanotube NO2 sensors.•Criteria are derived for when transient or steady-state sensing is most suitable. Nanowire sensors show great promise in a variety of sensing applications due to their potential for high sensitivities. Practical nanowire sensor systems, however, are often limited by low-frequency, 1/f noise. This work presents theoretical and experimental results comparing the performance metrics of sensing schemes using transient and steady-state parameters in the presence of 1/f noise. Criteria are derived for when the considered transient or steady-state sensing schemes will have a better signal-to-noise ratio (SNR). The theoretical results for the SNR of these sensing schemes are applied to experimental data from carbon nanotube NO2 sensors. These data and theoretical results demonstrate that due to the Langmuir binding behavior of the sensor-analyte system, sensing using the considered transient parameters increases linearity and decreases response time relative to steady-state sensing. Noise analysis further shows that with current devices, transient sensing has a lower SNR relative to steady-state sensing, however this may change if functionalization is considered. The use of transient parameters also has the potential to reduce sensor drift due to 1/f noise, improving system stability. In addition to providing useful considerations towards the design of carbon nanotube gas sensors, these results are relevant towards understanding the SNR of other chemical and biological sensors limited by 1/f noise.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2019.126674</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2019-10, Vol.297, p.126674, Article 126674
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_journals_2294472897
source Elsevier ScienceDirect Journals Complete
subjects 1/f noise
Carbon nanotubes
Chemical sensors
Detection
Gas sensing
Gas sensors
Linearity
Nanowire sensors
Nanowires
Nitrogen dioxide
Noise
Organic chemistry
Parameters
Performance measurement
Response time
Sensors
Signal to noise ratio
Steady state
Systems stability
Transient sensing
title Transient and steady-state readout of nanowire gas sensors in the presence of low-frequency noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20and%20steady-state%20readout%20of%20nanowire%20gas%20sensors%20in%20the%20presence%20of%20low-frequency%20noise&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Satterthwaite,%20Peter%20F.&rft.date=2019-10-15&rft.volume=297&rft.spage=126674&rft.pages=126674-&rft.artnum=126674&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2019.126674&rft_dat=%3Cproquest_cross%3E2294472897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2294472897&rft_id=info:pmid/&rft_els_id=S0925400519308743&rfr_iscdi=true