Non-trivial extension of the (1+2)-Poincaré algebra and conformal invariance on the boundary of \({\mathrm{AdS}}_3\)

Using recent results on strings on AdS$_3\times N^d$, where N is a d dimensional compact manifold, we re-examine the derivation of the non-trivial extension of the (1+2)-dimensional-Poincaré algebra obtained by Rausch de Traubenberg and Slupinsky. We show by explicit computation that this new extens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2001-07, Vol.21 (4), p.735-747
Hauptverfasser: Benkaddour, I, A El Rhalami, Saidi, E H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 747
container_issue 4
container_start_page 735
container_title The European physical journal. C, Particles and fields
container_volume 21
creator Benkaddour, I
A El Rhalami
Saidi, E H
description Using recent results on strings on AdS$_3\times N^d$, where N is a d dimensional compact manifold, we re-examine the derivation of the non-trivial extension of the (1+2)-dimensional-Poincaré algebra obtained by Rausch de Traubenberg and Slupinsky. We show by explicit computation that this new extension is a special kind of fractional supersymmetric algebra which may be derived from the deformation of the conformal structure living on the boundary of AdS\(_3\). The two so(1,2) Lorentz modules of spin \(\pm 1/ k\) used in building of the generalization of the (1+2) Poincaré algebra are re-interpreted in our analysis as highest weight representations of the left and right Virasoro symmetries on the boundary of AdS\(_3\). We also complete known results on 2d-fractional supersymmetry by using spectral flow of affine Kac–Moody and superconformal symmetries. Finally we make preliminary comments on the trick of introducing Fth roots of g-modules to generalize the so(1,2) result to higher rank Lie algebras g.
doi_str_mv 10.1007/s100520100769
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2293985032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2293985032</sourcerecordid><originalsourceid>FETCH-proquest_journals_22939850323</originalsourceid><addsrcrecordid>eNqNjMFKAzEQhoMoWKtH7wEvLWVtNklr9yii9CQFe1xYprtZm7I70Um2KKUP5HP4YmZBPHuZ-fj_-Yax61TcpkLcTX2cMyl6nmcnbJBqpZN5jE7_WOtzduH9TgghtVgMWPfsMAlk9xYabj6CQW8dclfzsDV8lE7kOFk5iyXQ9xeH5tVsCDhgxUuHtaM2ahb3QBawNDyqvbdxHVZAn_2ffHTIWwhbag_31cvxWKh8fMnOami8ufrdQ3bz9Lh-WCZv5N4740Oxcx1hrAopM5UtZkJJ9b-rH8GsUbk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2293985032</pqid></control><display><type>article</type><title>Non-trivial extension of the (1+2)-Poincaré algebra and conformal invariance on the boundary of \({\mathrm{AdS}}_3\)</title><source>Springer Nature OA Free Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Benkaddour, I ; A El Rhalami ; Saidi, E H</creator><creatorcontrib>Benkaddour, I ; A El Rhalami ; Saidi, E H</creatorcontrib><description>Using recent results on strings on AdS$_3\times N^d$, where N is a d dimensional compact manifold, we re-examine the derivation of the non-trivial extension of the (1+2)-dimensional-Poincaré algebra obtained by Rausch de Traubenberg and Slupinsky. We show by explicit computation that this new extension is a special kind of fractional supersymmetric algebra which may be derived from the deformation of the conformal structure living on the boundary of AdS\(_3\). The two so(1,2) Lorentz modules of spin \(\pm 1/ k\) used in building of the generalization of the (1+2) Poincaré algebra are re-interpreted in our analysis as highest weight representations of the left and right Virasoro symmetries on the boundary of AdS\(_3\). We also complete known results on 2d-fractional supersymmetry by using spectral flow of affine Kac–Moody and superconformal symmetries. Finally we make preliminary comments on the trick of introducing Fth roots of g-modules to generalize the so(1,2) result to higher rank Lie algebras g.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1007/s100520100769</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algebra ; Lie groups ; Modules ; Supersymmetry</subject><ispartof>The European physical journal. C, Particles and fields, 2001-07, Vol.21 (4), p.735-747</ispartof><rights>The European Physical Journal C - Particles and Fields is a copyright of Springer, (2001). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Benkaddour, I</creatorcontrib><creatorcontrib>A El Rhalami</creatorcontrib><creatorcontrib>Saidi, E H</creatorcontrib><title>Non-trivial extension of the (1+2)-Poincaré algebra and conformal invariance on the boundary of \({\mathrm{AdS}}_3\)</title><title>The European physical journal. C, Particles and fields</title><description>Using recent results on strings on AdS$_3\times N^d$, where N is a d dimensional compact manifold, we re-examine the derivation of the non-trivial extension of the (1+2)-dimensional-Poincaré algebra obtained by Rausch de Traubenberg and Slupinsky. We show by explicit computation that this new extension is a special kind of fractional supersymmetric algebra which may be derived from the deformation of the conformal structure living on the boundary of AdS\(_3\). The two so(1,2) Lorentz modules of spin \(\pm 1/ k\) used in building of the generalization of the (1+2) Poincaré algebra are re-interpreted in our analysis as highest weight representations of the left and right Virasoro symmetries on the boundary of AdS\(_3\). We also complete known results on 2d-fractional supersymmetry by using spectral flow of affine Kac–Moody and superconformal symmetries. Finally we make preliminary comments on the trick of introducing Fth roots of g-modules to generalize the so(1,2) result to higher rank Lie algebras g.</description><subject>Algebra</subject><subject>Lie groups</subject><subject>Modules</subject><subject>Supersymmetry</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMFKAzEQhoMoWKtH7wEvLWVtNklr9yii9CQFe1xYprtZm7I70Um2KKUP5HP4YmZBPHuZ-fj_-Yax61TcpkLcTX2cMyl6nmcnbJBqpZN5jE7_WOtzduH9TgghtVgMWPfsMAlk9xYabj6CQW8dclfzsDV8lE7kOFk5iyXQ9xeH5tVsCDhgxUuHtaM2ahb3QBawNDyqvbdxHVZAn_2ffHTIWwhbag_31cvxWKh8fMnOami8ufrdQ3bz9Lh-WCZv5N4740Oxcx1hrAopM5UtZkJJ9b-rH8GsUbk</recordid><startdate>20010701</startdate><enddate>20010701</enddate><creator>Benkaddour, I</creator><creator>A El Rhalami</creator><creator>Saidi, E H</creator><general>Springer Nature B.V</general><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20010701</creationdate><title>Non-trivial extension of the (1+2)-Poincaré algebra and conformal invariance on the boundary of \({\mathrm{AdS}}_3\)</title><author>Benkaddour, I ; A El Rhalami ; Saidi, E H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22939850323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algebra</topic><topic>Lie groups</topic><topic>Modules</topic><topic>Supersymmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benkaddour, I</creatorcontrib><creatorcontrib>A El Rhalami</creatorcontrib><creatorcontrib>Saidi, E H</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benkaddour, I</au><au>A El Rhalami</au><au>Saidi, E H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-trivial extension of the (1+2)-Poincaré algebra and conformal invariance on the boundary of \({\mathrm{AdS}}_3\)</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><date>2001-07-01</date><risdate>2001</risdate><volume>21</volume><issue>4</issue><spage>735</spage><epage>747</epage><pages>735-747</pages><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>Using recent results on strings on AdS$_3\times N^d$, where N is a d dimensional compact manifold, we re-examine the derivation of the non-trivial extension of the (1+2)-dimensional-Poincaré algebra obtained by Rausch de Traubenberg and Slupinsky. We show by explicit computation that this new extension is a special kind of fractional supersymmetric algebra which may be derived from the deformation of the conformal structure living on the boundary of AdS\(_3\). The two so(1,2) Lorentz modules of spin \(\pm 1/ k\) used in building of the generalization of the (1+2) Poincaré algebra are re-interpreted in our analysis as highest weight representations of the left and right Virasoro symmetries on the boundary of AdS\(_3\). We also complete known results on 2d-fractional supersymmetry by using spectral flow of affine Kac–Moody and superconformal symmetries. Finally we make preliminary comments on the trick of introducing Fth roots of g-modules to generalize the so(1,2) result to higher rank Lie algebras g.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s100520100769</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6044
ispartof The European physical journal. C, Particles and fields, 2001-07, Vol.21 (4), p.735-747
issn 1434-6044
1434-6052
language eng
recordid cdi_proquest_journals_2293985032
source Springer Nature OA Free Journals; SpringerLink Journals - AutoHoldings
subjects Algebra
Lie groups
Modules
Supersymmetry
title Non-trivial extension of the (1+2)-Poincaré algebra and conformal invariance on the boundary of \({\mathrm{AdS}}_3\)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-trivial%20extension%20of%20the%20(1+2)-Poincar%C3%A9%20algebra%20and%20conformal%20invariance%20on%20the%20boundary%20of%20%5C(%7B%5Cmathrm%7BAdS%7D%7D_3%5C)&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Benkaddour,%20I&rft.date=2001-07-01&rft.volume=21&rft.issue=4&rft.spage=735&rft.epage=747&rft.pages=735-747&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1007/s100520100769&rft_dat=%3Cproquest%3E2293985032%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2293985032&rft_id=info:pmid/&rfr_iscdi=true