Crystalline Co–Fe–B nanoparticles: Synthesis, microstructure and magnetic properties

A new approach for in-situ synthesis of crystalline Co–Fe–B nanoparticles was presented in which low temperature methods were developed by using metal chlorides and NaBH4 in an inorganic molten salt environment. Effects of different reaction systems/conditions on the phase formation, thermal behavio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2019-10, Vol.805, p.471-482
Hauptverfasser: Khoshsima, Sina, Altıntaş, Zerrin, Schmidt, Marcus, Bobnar, Matej, Somer, Mehmet, Balcı, Özge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 482
container_issue
container_start_page 471
container_title Journal of alloys and compounds
container_volume 805
creator Khoshsima, Sina
Altıntaş, Zerrin
Schmidt, Marcus
Bobnar, Matej
Somer, Mehmet
Balcı, Özge
description A new approach for in-situ synthesis of crystalline Co–Fe–B nanoparticles was presented in which low temperature methods were developed by using metal chlorides and NaBH4 in an inorganic molten salt environment. Effects of different reaction systems/conditions on the phase formation, thermal behavior and microstructure were investigated. The melting point of reactants and impurities in final powders were reduced by the use of molten salt technique. After a reaction of CoCl2, FeCl3 and NaBH4 at 850 °C in sealed tubes, CoB and Fe3B phases formed separately. After a reaction under Ar flow; however, CoFeB2 solid solution nano powders were obtained in one step at 850 °C with an average size of 60 nm. After annealing at 1100 °C, stable and highly crystalline (CoFe)B2 solid solution phase with a Co:Fe molar ratio of 1:1 was achieved. As-synthesized particles exhibited ferromagnetic property, and possessed a narrow hysteresis curve characteristic of soft magnetic materials. Extended reaction temperature from 650 to 850 °C is seen to produce coercivity enhancement up to 500 Oe without significant reduction in saturation magnetization. On the other hand, after an annealing process and subsequent phase and chemical change, crystalline (CoFe)B2 particles exhibited superparamagnetic property. [Display omitted] •One-step synthesis method of ternary Co–Fe–B crystalline nanoparticles.•The effect of different reaction systems/conditions on the phase formation.•Detailed microstructural, thermal and surface characterisations of the powders.•Magnetic coercivity enhancement with extended reaction temperature.•Ferromagnetic or superparamagnetic properties of binary and/or ternary phases.
doi_str_mv 10.1016/j.jallcom.2019.07.079
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2293953351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819325769</els_id><sourcerecordid>2293953351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-dfc853c75b273a874c956ac429ec52106b5601e8349b12d295d41666b144bfed3</originalsourceid><addsrcrecordid>eNqFUMtKxDAUDaLgOPoJQsGtrXk0aeNGtDgqDLhQwV1I01tN6cukFWbnP_iHfokZxr1wuHdzHvcehE4JTggm4qJJGt22ZugSiolMcBYg99CC5BmLUyHkPlpgSXmcszw_REfeNxgHJiML9Fq4jZ-C3PYQFcPP1_cKwriJet0Po3aTNS34y-hp00_v4K0_jzpr3OAnN5tpdhDpvoo6_dZDoEajG0YIIvDH6KDWrYeTv71EL6vb5-I-Xj_ePRTX69gwlk1xVZucM5PxkmZM51lqJBfapFSC4ZRgUXKBCeQslSWhFZW8SokQoiRpWtZQsSU62_mG6I8Z_KSaYXZ9iFSUSiY5Y5wEFt-xtqd7B7Uane202yiC1bZE1ai_EtW2RIWzABl0VzsdhBc-LTjljYXeQGUdmElVg_3H4RcfMH_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2293953351</pqid></control><display><type>article</type><title>Crystalline Co–Fe–B nanoparticles: Synthesis, microstructure and magnetic properties</title><source>Elsevier ScienceDirect Journals</source><creator>Khoshsima, Sina ; Altıntaş, Zerrin ; Schmidt, Marcus ; Bobnar, Matej ; Somer, Mehmet ; Balcı, Özge</creator><creatorcontrib>Khoshsima, Sina ; Altıntaş, Zerrin ; Schmidt, Marcus ; Bobnar, Matej ; Somer, Mehmet ; Balcı, Özge</creatorcontrib><description>A new approach for in-situ synthesis of crystalline Co–Fe–B nanoparticles was presented in which low temperature methods were developed by using metal chlorides and NaBH4 in an inorganic molten salt environment. Effects of different reaction systems/conditions on the phase formation, thermal behavior and microstructure were investigated. The melting point of reactants and impurities in final powders were reduced by the use of molten salt technique. After a reaction of CoCl2, FeCl3 and NaBH4 at 850 °C in sealed tubes, CoB and Fe3B phases formed separately. After a reaction under Ar flow; however, CoFeB2 solid solution nano powders were obtained in one step at 850 °C with an average size of 60 nm. After annealing at 1100 °C, stable and highly crystalline (CoFe)B2 solid solution phase with a Co:Fe molar ratio of 1:1 was achieved. As-synthesized particles exhibited ferromagnetic property, and possessed a narrow hysteresis curve characteristic of soft magnetic materials. Extended reaction temperature from 650 to 850 °C is seen to produce coercivity enhancement up to 500 Oe without significant reduction in saturation magnetization. On the other hand, after an annealing process and subsequent phase and chemical change, crystalline (CoFe)B2 particles exhibited superparamagnetic property. [Display omitted] •One-step synthesis method of ternary Co–Fe–B crystalline nanoparticles.•The effect of different reaction systems/conditions on the phase formation.•Detailed microstructural, thermal and surface characterisations of the powders.•Magnetic coercivity enhancement with extended reaction temperature.•Ferromagnetic or superparamagnetic properties of binary and/or ternary phases.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.07.079</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Annealing ; Boron ; Cobalt ; Coercivity ; Crystal structure ; Crystallinity ; Ferric chloride ; Ferromagnetism ; Iron ; Iron chlorides ; Magnetic materials ; Magnetic measurement ; Magnetic properties ; Magnetic saturation ; Melting points ; Metal chlorides ; Microstructure ; Molten salts ; Nanoparticles ; Organic chemistry ; Phase transitions ; Solid solutions ; Synthesis ; Thermodynamic properties ; Tubes</subject><ispartof>Journal of alloys and compounds, 2019-10, Vol.805, p.471-482</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-dfc853c75b273a874c956ac429ec52106b5601e8349b12d295d41666b144bfed3</citedby><cites>FETCH-LOGICAL-c337t-dfc853c75b273a874c956ac429ec52106b5601e8349b12d295d41666b144bfed3</cites><orcidid>0000-0001-9110-0012 ; 0000-0001-6756-3180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2019.07.079$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Khoshsima, Sina</creatorcontrib><creatorcontrib>Altıntaş, Zerrin</creatorcontrib><creatorcontrib>Schmidt, Marcus</creatorcontrib><creatorcontrib>Bobnar, Matej</creatorcontrib><creatorcontrib>Somer, Mehmet</creatorcontrib><creatorcontrib>Balcı, Özge</creatorcontrib><title>Crystalline Co–Fe–B nanoparticles: Synthesis, microstructure and magnetic properties</title><title>Journal of alloys and compounds</title><description>A new approach for in-situ synthesis of crystalline Co–Fe–B nanoparticles was presented in which low temperature methods were developed by using metal chlorides and NaBH4 in an inorganic molten salt environment. Effects of different reaction systems/conditions on the phase formation, thermal behavior and microstructure were investigated. The melting point of reactants and impurities in final powders were reduced by the use of molten salt technique. After a reaction of CoCl2, FeCl3 and NaBH4 at 850 °C in sealed tubes, CoB and Fe3B phases formed separately. After a reaction under Ar flow; however, CoFeB2 solid solution nano powders were obtained in one step at 850 °C with an average size of 60 nm. After annealing at 1100 °C, stable and highly crystalline (CoFe)B2 solid solution phase with a Co:Fe molar ratio of 1:1 was achieved. As-synthesized particles exhibited ferromagnetic property, and possessed a narrow hysteresis curve characteristic of soft magnetic materials. Extended reaction temperature from 650 to 850 °C is seen to produce coercivity enhancement up to 500 Oe without significant reduction in saturation magnetization. On the other hand, after an annealing process and subsequent phase and chemical change, crystalline (CoFe)B2 particles exhibited superparamagnetic property. [Display omitted] •One-step synthesis method of ternary Co–Fe–B crystalline nanoparticles.•The effect of different reaction systems/conditions on the phase formation.•Detailed microstructural, thermal and surface characterisations of the powders.•Magnetic coercivity enhancement with extended reaction temperature.•Ferromagnetic or superparamagnetic properties of binary and/or ternary phases.</description><subject>Annealing</subject><subject>Boron</subject><subject>Cobalt</subject><subject>Coercivity</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Ferric chloride</subject><subject>Ferromagnetism</subject><subject>Iron</subject><subject>Iron chlorides</subject><subject>Magnetic materials</subject><subject>Magnetic measurement</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Melting points</subject><subject>Metal chlorides</subject><subject>Microstructure</subject><subject>Molten salts</subject><subject>Nanoparticles</subject><subject>Organic chemistry</subject><subject>Phase transitions</subject><subject>Solid solutions</subject><subject>Synthesis</subject><subject>Thermodynamic properties</subject><subject>Tubes</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKxDAUDaLgOPoJQsGtrXk0aeNGtDgqDLhQwV1I01tN6cukFWbnP_iHfokZxr1wuHdzHvcehE4JTggm4qJJGt22ZugSiolMcBYg99CC5BmLUyHkPlpgSXmcszw_REfeNxgHJiML9Fq4jZ-C3PYQFcPP1_cKwriJet0Po3aTNS34y-hp00_v4K0_jzpr3OAnN5tpdhDpvoo6_dZDoEajG0YIIvDH6KDWrYeTv71EL6vb5-I-Xj_ePRTX69gwlk1xVZucM5PxkmZM51lqJBfapFSC4ZRgUXKBCeQslSWhFZW8SokQoiRpWtZQsSU62_mG6I8Z_KSaYXZ9iFSUSiY5Y5wEFt-xtqd7B7Uane202yiC1bZE1ai_EtW2RIWzABl0VzsdhBc-LTjljYXeQGUdmElVg_3H4RcfMH_8</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Khoshsima, Sina</creator><creator>Altıntaş, Zerrin</creator><creator>Schmidt, Marcus</creator><creator>Bobnar, Matej</creator><creator>Somer, Mehmet</creator><creator>Balcı, Özge</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-9110-0012</orcidid><orcidid>https://orcid.org/0000-0001-6756-3180</orcidid></search><sort><creationdate>20191015</creationdate><title>Crystalline Co–Fe–B nanoparticles: Synthesis, microstructure and magnetic properties</title><author>Khoshsima, Sina ; Altıntaş, Zerrin ; Schmidt, Marcus ; Bobnar, Matej ; Somer, Mehmet ; Balcı, Özge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-dfc853c75b273a874c956ac429ec52106b5601e8349b12d295d41666b144bfed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annealing</topic><topic>Boron</topic><topic>Cobalt</topic><topic>Coercivity</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Ferric chloride</topic><topic>Ferromagnetism</topic><topic>Iron</topic><topic>Iron chlorides</topic><topic>Magnetic materials</topic><topic>Magnetic measurement</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Melting points</topic><topic>Metal chlorides</topic><topic>Microstructure</topic><topic>Molten salts</topic><topic>Nanoparticles</topic><topic>Organic chemistry</topic><topic>Phase transitions</topic><topic>Solid solutions</topic><topic>Synthesis</topic><topic>Thermodynamic properties</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khoshsima, Sina</creatorcontrib><creatorcontrib>Altıntaş, Zerrin</creatorcontrib><creatorcontrib>Schmidt, Marcus</creatorcontrib><creatorcontrib>Bobnar, Matej</creatorcontrib><creatorcontrib>Somer, Mehmet</creatorcontrib><creatorcontrib>Balcı, Özge</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khoshsima, Sina</au><au>Altıntaş, Zerrin</au><au>Schmidt, Marcus</au><au>Bobnar, Matej</au><au>Somer, Mehmet</au><au>Balcı, Özge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystalline Co–Fe–B nanoparticles: Synthesis, microstructure and magnetic properties</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-10-15</date><risdate>2019</risdate><volume>805</volume><spage>471</spage><epage>482</epage><pages>471-482</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>A new approach for in-situ synthesis of crystalline Co–Fe–B nanoparticles was presented in which low temperature methods were developed by using metal chlorides and NaBH4 in an inorganic molten salt environment. Effects of different reaction systems/conditions on the phase formation, thermal behavior and microstructure were investigated. The melting point of reactants and impurities in final powders were reduced by the use of molten salt technique. After a reaction of CoCl2, FeCl3 and NaBH4 at 850 °C in sealed tubes, CoB and Fe3B phases formed separately. After a reaction under Ar flow; however, CoFeB2 solid solution nano powders were obtained in one step at 850 °C with an average size of 60 nm. After annealing at 1100 °C, stable and highly crystalline (CoFe)B2 solid solution phase with a Co:Fe molar ratio of 1:1 was achieved. As-synthesized particles exhibited ferromagnetic property, and possessed a narrow hysteresis curve characteristic of soft magnetic materials. Extended reaction temperature from 650 to 850 °C is seen to produce coercivity enhancement up to 500 Oe without significant reduction in saturation magnetization. On the other hand, after an annealing process and subsequent phase and chemical change, crystalline (CoFe)B2 particles exhibited superparamagnetic property. [Display omitted] •One-step synthesis method of ternary Co–Fe–B crystalline nanoparticles.•The effect of different reaction systems/conditions on the phase formation.•Detailed microstructural, thermal and surface characterisations of the powders.•Magnetic coercivity enhancement with extended reaction temperature.•Ferromagnetic or superparamagnetic properties of binary and/or ternary phases.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.07.079</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9110-0012</orcidid><orcidid>https://orcid.org/0000-0001-6756-3180</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2019-10, Vol.805, p.471-482
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2293953351
source Elsevier ScienceDirect Journals
subjects Annealing
Boron
Cobalt
Coercivity
Crystal structure
Crystallinity
Ferric chloride
Ferromagnetism
Iron
Iron chlorides
Magnetic materials
Magnetic measurement
Magnetic properties
Magnetic saturation
Melting points
Metal chlorides
Microstructure
Molten salts
Nanoparticles
Organic chemistry
Phase transitions
Solid solutions
Synthesis
Thermodynamic properties
Tubes
title Crystalline Co–Fe–B nanoparticles: Synthesis, microstructure and magnetic properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystalline%20Co%E2%80%93Fe%E2%80%93B%20nanoparticles:%20Synthesis,%20microstructure%20and%20magnetic%20properties&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Khoshsima,%20Sina&rft.date=2019-10-15&rft.volume=805&rft.spage=471&rft.epage=482&rft.pages=471-482&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.07.079&rft_dat=%3Cproquest_cross%3E2293953351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2293953351&rft_id=info:pmid/&rft_els_id=S0925838819325769&rfr_iscdi=true