Finite element analysis and molecular dynamics simulations of nanoscale crack-hole interactions in chiral graphene nanoribbons

•Nanocale crack-hole interactions in chiral GNRs are investigated by MD simulations and FE analysis.•Carbon-carbon bond in the FE method is modeled as a nonlinear Timoshenko beam based on the REBO potential.•Shielding effects on the crack tip stress field are dominated by the angle, hole-to-crack ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2019-09, Vol.218, p.106571, Article 106571
Hauptverfasser: Yao, Jinchun, Xia, Yuxuan, Dong, Shuhong, Yu, Peishi, Zhao, Junhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106571
container_title Engineering fracture mechanics
container_volume 218
creator Yao, Jinchun
Xia, Yuxuan
Dong, Shuhong
Yu, Peishi
Zhao, Junhua
description •Nanocale crack-hole interactions in chiral GNRs are investigated by MD simulations and FE analysis.•Carbon-carbon bond in the FE method is modeled as a nonlinear Timoshenko beam based on the REBO potential.•Shielding effects on the crack tip stress field are dominated by the angle, hole-to-crack tip spacing and chirality of the GNRs. Nanoscale defects (such as cracks, holes) often occur in graphene nanoribbons (GNRs). However, it is still a big challenge to accurately predict crack-hole interactions in them. In this study, the nanocale crack-hole interactions in chiral GNRs are investigated under mode-I loading using molecular dynamics (MD) simulations and finite element (FE) analysis. The carbon-carbon (CC) bond in the FE method is modeled as a nonlinear Timoshenko beam based on the full-atom Reactive Empirical Bond-Order interatomic potential of second generation (REBO potential) for the first time. The present MD and FE results show that the shielding effects on the crack tip stress field are dominated by the angle is θ, the hole-to-crack tip spacing r and the chirality of the GNRs. Checking against the linear-elastic fracture mechanics (LEFM) predictions of some crack-hole configurations shows that the present FE method and MD simulations have high accuracy. This study should be of great help for understanding nanoscale crack-hole interactions in GNRs and providing physical insights into the origins of defect engineering of GNRs.
doi_str_mv 10.1016/j.engfracmech.2019.106571
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2292943505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794419306034</els_id><sourcerecordid>2292943505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-8db7797dc9ece4db78bd4f99ac90b5c402e5375a38c522553a259cb585d2fad43</originalsourceid><addsrcrecordid>eNqNULFOwzAQtRBIlMI_GDGn2E7cxCOqKCAhscBsOedL45I4xU6RuvDtuISBkene3b13uvcIueZswRlf3m4X6DdNMNAjtAvBuErzpSz5CZnxqsyzMufylMwY4wmrojgnFzFuGWPlsmIz8rV23o1IscMe_UiNN90hupiApf3QIew7E6g9eNM7iDS6Pg1GN_hIh4Z644cIpkMK6Yf3rE0K6vyIqZtIzlNoXTAd3QSza9Hjjyi4uk7rS3LWmC7i1W-dk7f1_evqMXt-eXha3T1nkBdqzCpbl6UqLSgELFJT1bZolDKgWC2hYAJlXkqTVyCFkDI3QiqoZSWtaIwt8jm5me7uwvCxxzjq7bAPyWvUQiihilwymVhqYkEYYgzY6F1wvQkHzZk-xq23-k_c-hi3nuJO2tWkxWTj02HQERx6QOsCwqjt4P5x5RtYdpIf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2292943505</pqid></control><display><type>article</type><title>Finite element analysis and molecular dynamics simulations of nanoscale crack-hole interactions in chiral graphene nanoribbons</title><source>Elsevier ScienceDirect Journals</source><creator>Yao, Jinchun ; Xia, Yuxuan ; Dong, Shuhong ; Yu, Peishi ; Zhao, Junhua</creator><creatorcontrib>Yao, Jinchun ; Xia, Yuxuan ; Dong, Shuhong ; Yu, Peishi ; Zhao, Junhua</creatorcontrib><description>•Nanocale crack-hole interactions in chiral GNRs are investigated by MD simulations and FE analysis.•Carbon-carbon bond in the FE method is modeled as a nonlinear Timoshenko beam based on the REBO potential.•Shielding effects on the crack tip stress field are dominated by the angle, hole-to-crack tip spacing and chirality of the GNRs. Nanoscale defects (such as cracks, holes) often occur in graphene nanoribbons (GNRs). However, it is still a big challenge to accurately predict crack-hole interactions in them. In this study, the nanocale crack-hole interactions in chiral GNRs are investigated under mode-I loading using molecular dynamics (MD) simulations and finite element (FE) analysis. The carbon-carbon (CC) bond in the FE method is modeled as a nonlinear Timoshenko beam based on the full-atom Reactive Empirical Bond-Order interatomic potential of second generation (REBO potential) for the first time. The present MD and FE results show that the shielding effects on the crack tip stress field are dominated by the angle is θ, the hole-to-crack tip spacing r and the chirality of the GNRs. Checking against the linear-elastic fracture mechanics (LEFM) predictions of some crack-hole configurations shows that the present FE method and MD simulations have high accuracy. This study should be of great help for understanding nanoscale crack-hole interactions in GNRs and providing physical insights into the origins of defect engineering of GNRs.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2019.106571</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Carbon ; Chirality ; Computer simulation ; Crack ; Crack tips ; Empirical analysis ; Finite element ; Finite element method ; Fracture mechanics ; Graphene ; Graphene nanoribbons ; Hole ; Linear elastic fracture mechanics ; Loads (forces) ; Molecular dynamics ; Nanoribbons ; Simulation ; Stress distribution ; Timoshenko beams</subject><ispartof>Engineering fracture mechanics, 2019-09, Vol.218, p.106571, Article 106571</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-8db7797dc9ece4db78bd4f99ac90b5c402e5375a38c522553a259cb585d2fad43</citedby><cites>FETCH-LOGICAL-c349t-8db7797dc9ece4db78bd4f99ac90b5c402e5375a38c522553a259cb585d2fad43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013794419306034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Yao, Jinchun</creatorcontrib><creatorcontrib>Xia, Yuxuan</creatorcontrib><creatorcontrib>Dong, Shuhong</creatorcontrib><creatorcontrib>Yu, Peishi</creatorcontrib><creatorcontrib>Zhao, Junhua</creatorcontrib><title>Finite element analysis and molecular dynamics simulations of nanoscale crack-hole interactions in chiral graphene nanoribbons</title><title>Engineering fracture mechanics</title><description>•Nanocale crack-hole interactions in chiral GNRs are investigated by MD simulations and FE analysis.•Carbon-carbon bond in the FE method is modeled as a nonlinear Timoshenko beam based on the REBO potential.•Shielding effects on the crack tip stress field are dominated by the angle, hole-to-crack tip spacing and chirality of the GNRs. Nanoscale defects (such as cracks, holes) often occur in graphene nanoribbons (GNRs). However, it is still a big challenge to accurately predict crack-hole interactions in them. In this study, the nanocale crack-hole interactions in chiral GNRs are investigated under mode-I loading using molecular dynamics (MD) simulations and finite element (FE) analysis. The carbon-carbon (CC) bond in the FE method is modeled as a nonlinear Timoshenko beam based on the full-atom Reactive Empirical Bond-Order interatomic potential of second generation (REBO potential) for the first time. The present MD and FE results show that the shielding effects on the crack tip stress field are dominated by the angle is θ, the hole-to-crack tip spacing r and the chirality of the GNRs. Checking against the linear-elastic fracture mechanics (LEFM) predictions of some crack-hole configurations shows that the present FE method and MD simulations have high accuracy. This study should be of great help for understanding nanoscale crack-hole interactions in GNRs and providing physical insights into the origins of defect engineering of GNRs.</description><subject>Carbon</subject><subject>Chirality</subject><subject>Computer simulation</subject><subject>Crack</subject><subject>Crack tips</subject><subject>Empirical analysis</subject><subject>Finite element</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Graphene</subject><subject>Graphene nanoribbons</subject><subject>Hole</subject><subject>Linear elastic fracture mechanics</subject><subject>Loads (forces)</subject><subject>Molecular dynamics</subject><subject>Nanoribbons</subject><subject>Simulation</subject><subject>Stress distribution</subject><subject>Timoshenko beams</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNULFOwzAQtRBIlMI_GDGn2E7cxCOqKCAhscBsOedL45I4xU6RuvDtuISBkene3b13uvcIueZswRlf3m4X6DdNMNAjtAvBuErzpSz5CZnxqsyzMufylMwY4wmrojgnFzFuGWPlsmIz8rV23o1IscMe_UiNN90hupiApf3QIew7E6g9eNM7iDS6Pg1GN_hIh4Z644cIpkMK6Yf3rE0K6vyIqZtIzlNoXTAd3QSza9Hjjyi4uk7rS3LWmC7i1W-dk7f1_evqMXt-eXha3T1nkBdqzCpbl6UqLSgELFJT1bZolDKgWC2hYAJlXkqTVyCFkDI3QiqoZSWtaIwt8jm5me7uwvCxxzjq7bAPyWvUQiihilwymVhqYkEYYgzY6F1wvQkHzZk-xq23-k_c-hi3nuJO2tWkxWTj02HQERx6QOsCwqjt4P5x5RtYdpIf</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Yao, Jinchun</creator><creator>Xia, Yuxuan</creator><creator>Dong, Shuhong</creator><creator>Yu, Peishi</creator><creator>Zhao, Junhua</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>201909</creationdate><title>Finite element analysis and molecular dynamics simulations of nanoscale crack-hole interactions in chiral graphene nanoribbons</title><author>Yao, Jinchun ; Xia, Yuxuan ; Dong, Shuhong ; Yu, Peishi ; Zhao, Junhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-8db7797dc9ece4db78bd4f99ac90b5c402e5375a38c522553a259cb585d2fad43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Chirality</topic><topic>Computer simulation</topic><topic>Crack</topic><topic>Crack tips</topic><topic>Empirical analysis</topic><topic>Finite element</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Graphene</topic><topic>Graphene nanoribbons</topic><topic>Hole</topic><topic>Linear elastic fracture mechanics</topic><topic>Loads (forces)</topic><topic>Molecular dynamics</topic><topic>Nanoribbons</topic><topic>Simulation</topic><topic>Stress distribution</topic><topic>Timoshenko beams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Jinchun</creatorcontrib><creatorcontrib>Xia, Yuxuan</creatorcontrib><creatorcontrib>Dong, Shuhong</creatorcontrib><creatorcontrib>Yu, Peishi</creatorcontrib><creatorcontrib>Zhao, Junhua</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Jinchun</au><au>Xia, Yuxuan</au><au>Dong, Shuhong</au><au>Yu, Peishi</au><au>Zhao, Junhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element analysis and molecular dynamics simulations of nanoscale crack-hole interactions in chiral graphene nanoribbons</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2019-09</date><risdate>2019</risdate><volume>218</volume><spage>106571</spage><pages>106571-</pages><artnum>106571</artnum><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>•Nanocale crack-hole interactions in chiral GNRs are investigated by MD simulations and FE analysis.•Carbon-carbon bond in the FE method is modeled as a nonlinear Timoshenko beam based on the REBO potential.•Shielding effects on the crack tip stress field are dominated by the angle, hole-to-crack tip spacing and chirality of the GNRs. Nanoscale defects (such as cracks, holes) often occur in graphene nanoribbons (GNRs). However, it is still a big challenge to accurately predict crack-hole interactions in them. In this study, the nanocale crack-hole interactions in chiral GNRs are investigated under mode-I loading using molecular dynamics (MD) simulations and finite element (FE) analysis. The carbon-carbon (CC) bond in the FE method is modeled as a nonlinear Timoshenko beam based on the full-atom Reactive Empirical Bond-Order interatomic potential of second generation (REBO potential) for the first time. The present MD and FE results show that the shielding effects on the crack tip stress field are dominated by the angle is θ, the hole-to-crack tip spacing r and the chirality of the GNRs. Checking against the linear-elastic fracture mechanics (LEFM) predictions of some crack-hole configurations shows that the present FE method and MD simulations have high accuracy. This study should be of great help for understanding nanoscale crack-hole interactions in GNRs and providing physical insights into the origins of defect engineering of GNRs.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2019.106571</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2019-09, Vol.218, p.106571, Article 106571
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_journals_2292943505
source Elsevier ScienceDirect Journals
subjects Carbon
Chirality
Computer simulation
Crack
Crack tips
Empirical analysis
Finite element
Finite element method
Fracture mechanics
Graphene
Graphene nanoribbons
Hole
Linear elastic fracture mechanics
Loads (forces)
Molecular dynamics
Nanoribbons
Simulation
Stress distribution
Timoshenko beams
title Finite element analysis and molecular dynamics simulations of nanoscale crack-hole interactions in chiral graphene nanoribbons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A51%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20analysis%20and%20molecular%20dynamics%20simulations%20of%20nanoscale%20crack-hole%20interactions%20in%20chiral%20graphene%20nanoribbons&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Yao,%20Jinchun&rft.date=2019-09&rft.volume=218&rft.spage=106571&rft.pages=106571-&rft.artnum=106571&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2019.106571&rft_dat=%3Cproquest_cross%3E2292943505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2292943505&rft_id=info:pmid/&rft_els_id=S0013794419306034&rfr_iscdi=true