EA-LSTM: Evolutionary attention-based LSTM for time series prediction

Time series prediction with deep learning methods, especially Long Short-term Memory Neural Network (LSTM), have scored significant achievements in recent years. Despite the fact that LSTM can help to capture long-term dependencies, its ability to pay different degree of attention on sub-window feat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2019-10, Vol.181, p.104785, Article 104785
Hauptverfasser: Li, Youru, Zhu, Zhenfeng, Kong, Deqiang, Han, Hua, Zhao, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104785
container_title Knowledge-based systems
container_volume 181
creator Li, Youru
Zhu, Zhenfeng
Kong, Deqiang
Han, Hua
Zhao, Yao
description Time series prediction with deep learning methods, especially Long Short-term Memory Neural Network (LSTM), have scored significant achievements in recent years. Despite the fact that LSTM can help to capture long-term dependencies, its ability to pay different degree of attention on sub-window feature within multiple time-steps is insufficient. To address this issue, an evolutionary attention-based LSTM training with competitive random search is proposed for multivariate time series prediction. By transferring shared parameters, an evolutionary attention learning approach is introduced to LSTM. Thus, like that for biological evolution, the pattern for importance-based attention sampling can be confirmed during temporal relationship mining. To refrain from being trapped into partial optimization like traditional gradient-based methods, an evolutionary computation inspired competitive random search method is proposed, which can well configure the parameters in the attention layer. Experimental results have illustrated that the proposed model can achieve competetive prediction performance compared with other baseline methods.
doi_str_mv 10.1016/j.knosys.2019.05.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2292058349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705119302400</els_id><sourcerecordid>2292058349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-9e5a7afb3b909b76630b535c5b792a26230e21829d4379b5667bb53dc13c3d343</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw8Fz62TpGkaD8Ky1D-w4sH1HJo0hdTdZk2yC357U-rZ0zDwe2_mPYRuMRQYcHU_FF-jCz-hIIBFAawAUp-hBa45yXkJ4hwtQDDIOTB8ia5CGACAEFwvUNOs8s3H9u0ha05ud4zWja3_ydoYzTgtuWqD6bIJyXrns2j3JgvGWxOygzed1RN1jS76dhfMzd9cos-nZrt-yTfvz6_r1SbXtIaYC8Na3vaKKgFC8aqioBhlmikuSEsqQsGkr4joSsqFYlXFVQI6jammHS3pEt3Nvgfvvo8mRDm4ox_TSUmIIMBqWopElTOlvQvBm14evN2nWBKDnAqTg5wLk1NhEphMhSXZ4ywzKcHJGi-DtmbUKaQ3OsrO2f8NfgHH9nR6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2292058349</pqid></control><display><type>article</type><title>EA-LSTM: Evolutionary attention-based LSTM for time series prediction</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Youru ; Zhu, Zhenfeng ; Kong, Deqiang ; Han, Hua ; Zhao, Yao</creator><creatorcontrib>Li, Youru ; Zhu, Zhenfeng ; Kong, Deqiang ; Han, Hua ; Zhao, Yao</creatorcontrib><description>Time series prediction with deep learning methods, especially Long Short-term Memory Neural Network (LSTM), have scored significant achievements in recent years. Despite the fact that LSTM can help to capture long-term dependencies, its ability to pay different degree of attention on sub-window feature within multiple time-steps is insufficient. To address this issue, an evolutionary attention-based LSTM training with competitive random search is proposed for multivariate time series prediction. By transferring shared parameters, an evolutionary attention learning approach is introduced to LSTM. Thus, like that for biological evolution, the pattern for importance-based attention sampling can be confirmed during temporal relationship mining. To refrain from being trapped into partial optimization like traditional gradient-based methods, an evolutionary computation inspired competitive random search method is proposed, which can well configure the parameters in the attention layer. Experimental results have illustrated that the proposed model can achieve competetive prediction performance compared with other baseline methods.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2019.05.028</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Deep neural network ; Evolutionary computation ; Machine learning ; Neural networks ; Optimization ; Parameters ; Random search method ; Time series ; Time series prediction</subject><ispartof>Knowledge-based systems, 2019-10, Vol.181, p.104785, Article 104785</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Oct 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-9e5a7afb3b909b76630b535c5b792a26230e21829d4379b5667bb53dc13c3d343</citedby><cites>FETCH-LOGICAL-c380t-9e5a7afb3b909b76630b535c5b792a26230e21829d4379b5667bb53dc13c3d343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950705119302400$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Li, Youru</creatorcontrib><creatorcontrib>Zhu, Zhenfeng</creatorcontrib><creatorcontrib>Kong, Deqiang</creatorcontrib><creatorcontrib>Han, Hua</creatorcontrib><creatorcontrib>Zhao, Yao</creatorcontrib><title>EA-LSTM: Evolutionary attention-based LSTM for time series prediction</title><title>Knowledge-based systems</title><description>Time series prediction with deep learning methods, especially Long Short-term Memory Neural Network (LSTM), have scored significant achievements in recent years. Despite the fact that LSTM can help to capture long-term dependencies, its ability to pay different degree of attention on sub-window feature within multiple time-steps is insufficient. To address this issue, an evolutionary attention-based LSTM training with competitive random search is proposed for multivariate time series prediction. By transferring shared parameters, an evolutionary attention learning approach is introduced to LSTM. Thus, like that for biological evolution, the pattern for importance-based attention sampling can be confirmed during temporal relationship mining. To refrain from being trapped into partial optimization like traditional gradient-based methods, an evolutionary computation inspired competitive random search method is proposed, which can well configure the parameters in the attention layer. Experimental results have illustrated that the proposed model can achieve competetive prediction performance compared with other baseline methods.</description><subject>Deep neural network</subject><subject>Evolutionary computation</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Random search method</subject><subject>Time series</subject><subject>Time series prediction</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw8Fz62TpGkaD8Ky1D-w4sH1HJo0hdTdZk2yC357U-rZ0zDwe2_mPYRuMRQYcHU_FF-jCz-hIIBFAawAUp-hBa45yXkJ4hwtQDDIOTB8ia5CGACAEFwvUNOs8s3H9u0ha05ud4zWja3_ydoYzTgtuWqD6bIJyXrns2j3JgvGWxOygzed1RN1jS76dhfMzd9cos-nZrt-yTfvz6_r1SbXtIaYC8Na3vaKKgFC8aqioBhlmikuSEsqQsGkr4joSsqFYlXFVQI6jammHS3pEt3Nvgfvvo8mRDm4ox_TSUmIIMBqWopElTOlvQvBm14evN2nWBKDnAqTg5wLk1NhEphMhSXZ4ywzKcHJGi-DtmbUKaQ3OsrO2f8NfgHH9nR6</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Li, Youru</creator><creator>Zhu, Zhenfeng</creator><creator>Kong, Deqiang</creator><creator>Han, Hua</creator><creator>Zhao, Yao</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20191001</creationdate><title>EA-LSTM: Evolutionary attention-based LSTM for time series prediction</title><author>Li, Youru ; Zhu, Zhenfeng ; Kong, Deqiang ; Han, Hua ; Zhao, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-9e5a7afb3b909b76630b535c5b792a26230e21829d4379b5667bb53dc13c3d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Deep neural network</topic><topic>Evolutionary computation</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Random search method</topic><topic>Time series</topic><topic>Time series prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Youru</creatorcontrib><creatorcontrib>Zhu, Zhenfeng</creatorcontrib><creatorcontrib>Kong, Deqiang</creatorcontrib><creatorcontrib>Han, Hua</creatorcontrib><creatorcontrib>Zhao, Yao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Youru</au><au>Zhu, Zhenfeng</au><au>Kong, Deqiang</au><au>Han, Hua</au><au>Zhao, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EA-LSTM: Evolutionary attention-based LSTM for time series prediction</atitle><jtitle>Knowledge-based systems</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>181</volume><spage>104785</spage><pages>104785-</pages><artnum>104785</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Time series prediction with deep learning methods, especially Long Short-term Memory Neural Network (LSTM), have scored significant achievements in recent years. Despite the fact that LSTM can help to capture long-term dependencies, its ability to pay different degree of attention on sub-window feature within multiple time-steps is insufficient. To address this issue, an evolutionary attention-based LSTM training with competitive random search is proposed for multivariate time series prediction. By transferring shared parameters, an evolutionary attention learning approach is introduced to LSTM. Thus, like that for biological evolution, the pattern for importance-based attention sampling can be confirmed during temporal relationship mining. To refrain from being trapped into partial optimization like traditional gradient-based methods, an evolutionary computation inspired competitive random search method is proposed, which can well configure the parameters in the attention layer. Experimental results have illustrated that the proposed model can achieve competetive prediction performance compared with other baseline methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2019.05.028</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2019-10, Vol.181, p.104785, Article 104785
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2292058349
source Elsevier ScienceDirect Journals
subjects Deep neural network
Evolutionary computation
Machine learning
Neural networks
Optimization
Parameters
Random search method
Time series
Time series prediction
title EA-LSTM: Evolutionary attention-based LSTM for time series prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EA-LSTM:%20Evolutionary%20attention-based%20LSTM%20for%20time%20series%20prediction&rft.jtitle=Knowledge-based%20systems&rft.au=Li,%20Youru&rft.date=2019-10-01&rft.volume=181&rft.spage=104785&rft.pages=104785-&rft.artnum=104785&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2019.05.028&rft_dat=%3Cproquest_cross%3E2292058349%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2292058349&rft_id=info:pmid/&rft_els_id=S0950705119302400&rfr_iscdi=true