Crop phenology retrieval via polarimetric SAR decomposition and Random Forest algorithm

Knowledge of crop phenology assists in making agricultural decisions such as appropriate irrigation and fertilization applications in order to optimize crop yield. The objective of this study is to monitor crop phenology using Synthetic Aperture Radar (SAR) polarimetric decompositions and a random f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment 2019-09, Vol.231, p.111234, Article 111234
Hauptverfasser: Wang, Hongquan, Magagi, Ramata, Goïta, Kalifa, Trudel, Melanie, McNairn, Heather, Powers, Jarrett
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111234
container_title Remote sensing of environment
container_volume 231
creator Wang, Hongquan
Magagi, Ramata
Goïta, Kalifa
Trudel, Melanie
McNairn, Heather
Powers, Jarrett
description Knowledge of crop phenology assists in making agricultural decisions such as appropriate irrigation and fertilization applications in order to optimize crop yield. The objective of this study is to monitor crop phenology using Synthetic Aperture Radar (SAR) polarimetric decompositions and a random forest algorithm applied to a multi-temporal RADARSAT-2 dataset, acquired during the Soil Moisture Active Passive (SMAP) Validation Experiment 2016 in Manitoba (SMAPVEX16-MB). The model-based and eigen-based polarimetric parameters are used to separate the vegetation and soil scattering contributions in the total radar signal. As the crop morphological shape and structure vary with phenological growth, our study assumes that the polarimetric parameters related to the volume scattering mechanism have the potential to track the crop phenology. The sensitivity of the polarimetric parameters to the ground identified crop phenology is analyzed for different crop types. For canola, a single polarimetric parameter is sufficient to characterize the crop phenology, due to the high volume scattering power and large temporal dynamic. For corn, soybean and wheat, combinations of multiple polarimetric parameters are required. For each crop type, the Random Forest algorithm trained using 60% of the data is used to retrieve the crop phenology. Performances are compared to Artificial Neural Network, Support Vector Machine Regression and k-Nearest neighborhood algorithms. The Random Forest algorithm provides the best phenology retrieval with significant (p-value < 0.01) spearman correlation coefficients (between the retrieved and ground identified phenology) of 0.93, 0.90, 0.85 and 0.91 for canola, corn, soybean and wheat, respectively. While a single polarimetric parameter demonstrates limited sensitivity to corn phenology, the retrieved phenology from the Random Forest algorithm using multiple polarimetric parameters agrees well with the ground measurements. Furthermore, the importance of different polarimetric parameters for phenology retrieval using the Random Forest algorithm is quantified for different crop types. These findings will be of interest in developing future analytical retrieval models.
doi_str_mv 10.1016/j.rse.2019.111234
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2292057658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2292057658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-19dc11c61f6bb0ed310b388df65b29134c253eff31ccdcab569c41fcaac3f9633</originalsourceid><addsrcrecordid>eNotkFFLwzAUhYMoOKc_wLeAz625SZM2j2M4FQbCVHwMaZpsLW1Tk26wf2_LfLkHLodz7_kQegSSAgHx3KQh2pQSkCkAUJZdoQUUuUxITrJrtCCEZUlGeX6L7mJsCAFe5LBAP-vgBzwcbO9bvz_jYMdQ25Nu8anWePCtDnU37wz-XO1wZY3vBh_rsfY91n2Fd9PwHd74YOOIdbv3oR4P3T26cbqN9uFfl-h78_K1fku2H6_v69U2MQzEmICsDIAR4ERZElsxICUrisoJXlIJLDOUM-scA2Mqo0supMnAGa0Nc1IwtkRPl9wh-N_j9IJq_DH000lFqaSE54IXkwsuLhN8jME6NUy1dDgrIGrmpxo18VMzP3Xhx_4A7M9lvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2292057658</pqid></control><display><type>article</type><title>Crop phenology retrieval via polarimetric SAR decomposition and Random Forest algorithm</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Hongquan ; Magagi, Ramata ; Goïta, Kalifa ; Trudel, Melanie ; McNairn, Heather ; Powers, Jarrett</creator><creatorcontrib>Wang, Hongquan ; Magagi, Ramata ; Goïta, Kalifa ; Trudel, Melanie ; McNairn, Heather ; Powers, Jarrett</creatorcontrib><description>Knowledge of crop phenology assists in making agricultural decisions such as appropriate irrigation and fertilization applications in order to optimize crop yield. The objective of this study is to monitor crop phenology using Synthetic Aperture Radar (SAR) polarimetric decompositions and a random forest algorithm applied to a multi-temporal RADARSAT-2 dataset, acquired during the Soil Moisture Active Passive (SMAP) Validation Experiment 2016 in Manitoba (SMAPVEX16-MB). The model-based and eigen-based polarimetric parameters are used to separate the vegetation and soil scattering contributions in the total radar signal. As the crop morphological shape and structure vary with phenological growth, our study assumes that the polarimetric parameters related to the volume scattering mechanism have the potential to track the crop phenology. The sensitivity of the polarimetric parameters to the ground identified crop phenology is analyzed for different crop types. For canola, a single polarimetric parameter is sufficient to characterize the crop phenology, due to the high volume scattering power and large temporal dynamic. For corn, soybean and wheat, combinations of multiple polarimetric parameters are required. For each crop type, the Random Forest algorithm trained using 60% of the data is used to retrieve the crop phenology. Performances are compared to Artificial Neural Network, Support Vector Machine Regression and k-Nearest neighborhood algorithms. The Random Forest algorithm provides the best phenology retrieval with significant (p-value &lt; 0.01) spearman correlation coefficients (between the retrieved and ground identified phenology) of 0.93, 0.90, 0.85 and 0.91 for canola, corn, soybean and wheat, respectively. While a single polarimetric parameter demonstrates limited sensitivity to corn phenology, the retrieved phenology from the Random Forest algorithm using multiple polarimetric parameters agrees well with the ground measurements. Furthermore, the importance of different polarimetric parameters for phenology retrieval using the Random Forest algorithm is quantified for different crop types. These findings will be of interest in developing future analytical retrieval models.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2019.111234</identifier><language>eng</language><publisher>New York: Elsevier BV</publisher><subject>Algorithms ; Artificial neural networks ; Corn ; Corn phenology ; Correlation coefficient ; Correlation coefficients ; Crop phenology ; Crop yield ; Crops ; Decision trees ; Decomposition ; Fertilization ; Irrigation ; Mathematical models ; Neural networks ; Parameter identification ; Parameter sensitivity ; Phenology ; Radar ; Radar polarimetry ; Radarsat ; Regression analysis ; Retrieval ; Scattering ; Soil moisture ; Soils ; Soybeans ; Support vector machines ; Synthetic aperture radar ; Wheat</subject><ispartof>Remote sensing of environment, 2019-09, Vol.231, p.111234, Article 111234</ispartof><rights>Copyright Elsevier BV Sep 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-19dc11c61f6bb0ed310b388df65b29134c253eff31ccdcab569c41fcaac3f9633</citedby><cites>FETCH-LOGICAL-c316t-19dc11c61f6bb0ed310b388df65b29134c253eff31ccdcab569c41fcaac3f9633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Hongquan</creatorcontrib><creatorcontrib>Magagi, Ramata</creatorcontrib><creatorcontrib>Goïta, Kalifa</creatorcontrib><creatorcontrib>Trudel, Melanie</creatorcontrib><creatorcontrib>McNairn, Heather</creatorcontrib><creatorcontrib>Powers, Jarrett</creatorcontrib><title>Crop phenology retrieval via polarimetric SAR decomposition and Random Forest algorithm</title><title>Remote sensing of environment</title><description>Knowledge of crop phenology assists in making agricultural decisions such as appropriate irrigation and fertilization applications in order to optimize crop yield. The objective of this study is to monitor crop phenology using Synthetic Aperture Radar (SAR) polarimetric decompositions and a random forest algorithm applied to a multi-temporal RADARSAT-2 dataset, acquired during the Soil Moisture Active Passive (SMAP) Validation Experiment 2016 in Manitoba (SMAPVEX16-MB). The model-based and eigen-based polarimetric parameters are used to separate the vegetation and soil scattering contributions in the total radar signal. As the crop morphological shape and structure vary with phenological growth, our study assumes that the polarimetric parameters related to the volume scattering mechanism have the potential to track the crop phenology. The sensitivity of the polarimetric parameters to the ground identified crop phenology is analyzed for different crop types. For canola, a single polarimetric parameter is sufficient to characterize the crop phenology, due to the high volume scattering power and large temporal dynamic. For corn, soybean and wheat, combinations of multiple polarimetric parameters are required. For each crop type, the Random Forest algorithm trained using 60% of the data is used to retrieve the crop phenology. Performances are compared to Artificial Neural Network, Support Vector Machine Regression and k-Nearest neighborhood algorithms. The Random Forest algorithm provides the best phenology retrieval with significant (p-value &lt; 0.01) spearman correlation coefficients (between the retrieved and ground identified phenology) of 0.93, 0.90, 0.85 and 0.91 for canola, corn, soybean and wheat, respectively. While a single polarimetric parameter demonstrates limited sensitivity to corn phenology, the retrieved phenology from the Random Forest algorithm using multiple polarimetric parameters agrees well with the ground measurements. Furthermore, the importance of different polarimetric parameters for phenology retrieval using the Random Forest algorithm is quantified for different crop types. These findings will be of interest in developing future analytical retrieval models.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Corn</subject><subject>Corn phenology</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Crop phenology</subject><subject>Crop yield</subject><subject>Crops</subject><subject>Decision trees</subject><subject>Decomposition</subject><subject>Fertilization</subject><subject>Irrigation</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Parameter identification</subject><subject>Parameter sensitivity</subject><subject>Phenology</subject><subject>Radar</subject><subject>Radar polarimetry</subject><subject>Radarsat</subject><subject>Regression analysis</subject><subject>Retrieval</subject><subject>Scattering</subject><subject>Soil moisture</subject><subject>Soils</subject><subject>Soybeans</subject><subject>Support vector machines</subject><subject>Synthetic aperture radar</subject><subject>Wheat</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkFFLwzAUhYMoOKc_wLeAz625SZM2j2M4FQbCVHwMaZpsLW1Tk26wf2_LfLkHLodz7_kQegSSAgHx3KQh2pQSkCkAUJZdoQUUuUxITrJrtCCEZUlGeX6L7mJsCAFe5LBAP-vgBzwcbO9bvz_jYMdQ25Nu8anWePCtDnU37wz-XO1wZY3vBh_rsfY91n2Fd9PwHd74YOOIdbv3oR4P3T26cbqN9uFfl-h78_K1fku2H6_v69U2MQzEmICsDIAR4ERZElsxICUrisoJXlIJLDOUM-scA2Mqo0supMnAGa0Nc1IwtkRPl9wh-N_j9IJq_DH000lFqaSE54IXkwsuLhN8jME6NUy1dDgrIGrmpxo18VMzP3Xhx_4A7M9lvQ</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Wang, Hongquan</creator><creator>Magagi, Ramata</creator><creator>Goïta, Kalifa</creator><creator>Trudel, Melanie</creator><creator>McNairn, Heather</creator><creator>Powers, Jarrett</creator><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20190915</creationdate><title>Crop phenology retrieval via polarimetric SAR decomposition and Random Forest algorithm</title><author>Wang, Hongquan ; Magagi, Ramata ; Goïta, Kalifa ; Trudel, Melanie ; McNairn, Heather ; Powers, Jarrett</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-19dc11c61f6bb0ed310b388df65b29134c253eff31ccdcab569c41fcaac3f9633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Corn</topic><topic>Corn phenology</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Crop phenology</topic><topic>Crop yield</topic><topic>Crops</topic><topic>Decision trees</topic><topic>Decomposition</topic><topic>Fertilization</topic><topic>Irrigation</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Parameter identification</topic><topic>Parameter sensitivity</topic><topic>Phenology</topic><topic>Radar</topic><topic>Radar polarimetry</topic><topic>Radarsat</topic><topic>Regression analysis</topic><topic>Retrieval</topic><topic>Scattering</topic><topic>Soil moisture</topic><topic>Soils</topic><topic>Soybeans</topic><topic>Support vector machines</topic><topic>Synthetic aperture radar</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongquan</creatorcontrib><creatorcontrib>Magagi, Ramata</creatorcontrib><creatorcontrib>Goïta, Kalifa</creatorcontrib><creatorcontrib>Trudel, Melanie</creatorcontrib><creatorcontrib>McNairn, Heather</creatorcontrib><creatorcontrib>Powers, Jarrett</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hongquan</au><au>Magagi, Ramata</au><au>Goïta, Kalifa</au><au>Trudel, Melanie</au><au>McNairn, Heather</au><au>Powers, Jarrett</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crop phenology retrieval via polarimetric SAR decomposition and Random Forest algorithm</atitle><jtitle>Remote sensing of environment</jtitle><date>2019-09-15</date><risdate>2019</risdate><volume>231</volume><spage>111234</spage><pages>111234-</pages><artnum>111234</artnum><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>Knowledge of crop phenology assists in making agricultural decisions such as appropriate irrigation and fertilization applications in order to optimize crop yield. The objective of this study is to monitor crop phenology using Synthetic Aperture Radar (SAR) polarimetric decompositions and a random forest algorithm applied to a multi-temporal RADARSAT-2 dataset, acquired during the Soil Moisture Active Passive (SMAP) Validation Experiment 2016 in Manitoba (SMAPVEX16-MB). The model-based and eigen-based polarimetric parameters are used to separate the vegetation and soil scattering contributions in the total radar signal. As the crop morphological shape and structure vary with phenological growth, our study assumes that the polarimetric parameters related to the volume scattering mechanism have the potential to track the crop phenology. The sensitivity of the polarimetric parameters to the ground identified crop phenology is analyzed for different crop types. For canola, a single polarimetric parameter is sufficient to characterize the crop phenology, due to the high volume scattering power and large temporal dynamic. For corn, soybean and wheat, combinations of multiple polarimetric parameters are required. For each crop type, the Random Forest algorithm trained using 60% of the data is used to retrieve the crop phenology. Performances are compared to Artificial Neural Network, Support Vector Machine Regression and k-Nearest neighborhood algorithms. The Random Forest algorithm provides the best phenology retrieval with significant (p-value &lt; 0.01) spearman correlation coefficients (between the retrieved and ground identified phenology) of 0.93, 0.90, 0.85 and 0.91 for canola, corn, soybean and wheat, respectively. While a single polarimetric parameter demonstrates limited sensitivity to corn phenology, the retrieved phenology from the Random Forest algorithm using multiple polarimetric parameters agrees well with the ground measurements. Furthermore, the importance of different polarimetric parameters for phenology retrieval using the Random Forest algorithm is quantified for different crop types. These findings will be of interest in developing future analytical retrieval models.</abstract><cop>New York</cop><pub>Elsevier BV</pub><doi>10.1016/j.rse.2019.111234</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-4257
ispartof Remote sensing of environment, 2019-09, Vol.231, p.111234, Article 111234
issn 0034-4257
1879-0704
language eng
recordid cdi_proquest_journals_2292057658
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Artificial neural networks
Corn
Corn phenology
Correlation coefficient
Correlation coefficients
Crop phenology
Crop yield
Crops
Decision trees
Decomposition
Fertilization
Irrigation
Mathematical models
Neural networks
Parameter identification
Parameter sensitivity
Phenology
Radar
Radar polarimetry
Radarsat
Regression analysis
Retrieval
Scattering
Soil moisture
Soils
Soybeans
Support vector machines
Synthetic aperture radar
Wheat
title Crop phenology retrieval via polarimetric SAR decomposition and Random Forest algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T11%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crop%20phenology%20retrieval%20via%20polarimetric%20SAR%20decomposition%20and%20Random%20Forest%20algorithm&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Wang,%20Hongquan&rft.date=2019-09-15&rft.volume=231&rft.spage=111234&rft.pages=111234-&rft.artnum=111234&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2019.111234&rft_dat=%3Cproquest_cross%3E2292057658%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2292057658&rft_id=info:pmid/&rfr_iscdi=true