Efficient and stable CsPbI3 perovskite quantum dots enabled by in situ ytterbium doping for photovoltaic applications
Colloidal perovskite nanocrystals, or quantum dots (QDs), have quickly emerged and exhibited unique opportunities for optoelectronic applications. This is due to their excellent optical and photovoltaic properties as well as composition tunability. Currently, there are only a limited number of publi...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (36), p.20936-20944 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20944 |
---|---|
container_issue | 36 |
container_start_page | 20936 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 7 |
creator | Shi, Junwei Li, Fangchao Yuan, Jianyu Ling, Xufeng Zhou, Sijie Qian, Yuli Ma, Wanli |
description | Colloidal perovskite nanocrystals, or quantum dots (QDs), have quickly emerged and exhibited unique opportunities for optoelectronic applications. This is due to their excellent optical and photovoltaic properties as well as composition tunability. Currently, there are only a limited number of publications correlating QD synthesis optimization with relevant device performance. Here, CsPbI3 QDs have been successfully synthesized and displayed improved optoelectrical properties by implementing an in situ ytterbium (Yb) doping strategy during synthesis. Systematic investigations were carried out to examine the effects of Yb-doping. Preliminary experimental results indicated that Yb3+ lanthanide cations could effectively reduce the number of defects and trap states caused by surface and lattice vacancies. This result contributes to an improvement in QD photoluminescence quantum yield (PLQY), material crystallinity, thermal stability and carrier transport. Consequently, the solar cells adopting optimally Yb-doped CsPbI3 QDs achieved the best power conversion efficiency (PCE) of 13.12% and displayed significantly improved storage stability under ambient conditions. These results indicate that in situ doping has great potential to improve the quality of the resultant perovskite QDs. This approach can provide a new path to a breakthrough in QD based solar cell technology. |
doi_str_mv | 10.1039/c9ta07143a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2291259785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2291259785</sourcerecordid><originalsourceid>FETCH-LOGICAL-g286t-5057f14e0d2a8ab92ffa7d4633f4fc8d05d601ea62d728ee7182199978dbf53b3</originalsourceid><addsrcrecordid>eNo9jUtLAzEYRYMoWGo3_oKA69E8JpNkKaVqoaALXZdkktTUMZlOvin03zs-8G7OXRzuReiakltKuL5rNRgiac3NGZoxIkgla92c_3elLtGilD2ZoghptJ6hcRVCbKNPgE1yuICxncfL8mLXHPd-yMfyEcHjw2gSjJ_YZSjYp2_LYXvCMeESYcQnAD_Y-GP0Me1wyAPu3zPkY-7AxBabvu9iayDmVK7QRTBd8Ys_ztHbw-p1-VRtnh_Xy_tNtWOqgUoQIQOtPXHMKGM1C8FIVzechzq0yhHhGkK9aZiTTHkvqWJUay2Vs0Fwy-fo5ne3H_Jh9AW2-zwOabrcMqYpE5Mq-Be711-q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2291259785</pqid></control><display><type>article</type><title>Efficient and stable CsPbI3 perovskite quantum dots enabled by in situ ytterbium doping for photovoltaic applications</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Shi, Junwei ; Li, Fangchao ; Yuan, Jianyu ; Ling, Xufeng ; Zhou, Sijie ; Qian, Yuli ; Ma, Wanli</creator><creatorcontrib>Shi, Junwei ; Li, Fangchao ; Yuan, Jianyu ; Ling, Xufeng ; Zhou, Sijie ; Qian, Yuli ; Ma, Wanli</creatorcontrib><description>Colloidal perovskite nanocrystals, or quantum dots (QDs), have quickly emerged and exhibited unique opportunities for optoelectronic applications. This is due to their excellent optical and photovoltaic properties as well as composition tunability. Currently, there are only a limited number of publications correlating QD synthesis optimization with relevant device performance. Here, CsPbI3 QDs have been successfully synthesized and displayed improved optoelectrical properties by implementing an in situ ytterbium (Yb) doping strategy during synthesis. Systematic investigations were carried out to examine the effects of Yb-doping. Preliminary experimental results indicated that Yb3+ lanthanide cations could effectively reduce the number of defects and trap states caused by surface and lattice vacancies. This result contributes to an improvement in QD photoluminescence quantum yield (PLQY), material crystallinity, thermal stability and carrier transport. Consequently, the solar cells adopting optimally Yb-doped CsPbI3 QDs achieved the best power conversion efficiency (PCE) of 13.12% and displayed significantly improved storage stability under ambient conditions. These results indicate that in situ doping has great potential to improve the quality of the resultant perovskite QDs. This approach can provide a new path to a breakthrough in QD based solar cell technology.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta07143a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Carrier transport ; Cations ; Crystal defects ; Doping ; Energy conversion efficiency ; Lattice vacancies ; Nanocrystals ; Optical properties ; Optimization ; Optoelectronics ; Perovskites ; Photoluminescence ; Photons ; Photovoltaic cells ; Photovoltaics ; Quantum dots ; Shelf life ; Solar cells ; Storage stability ; Synthesis ; Thermal stability ; Ytterbium</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (36), p.20936-20944</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Shi, Junwei</creatorcontrib><creatorcontrib>Li, Fangchao</creatorcontrib><creatorcontrib>Yuan, Jianyu</creatorcontrib><creatorcontrib>Ling, Xufeng</creatorcontrib><creatorcontrib>Zhou, Sijie</creatorcontrib><creatorcontrib>Qian, Yuli</creatorcontrib><creatorcontrib>Ma, Wanli</creatorcontrib><title>Efficient and stable CsPbI3 perovskite quantum dots enabled by in situ ytterbium doping for photovoltaic applications</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Colloidal perovskite nanocrystals, or quantum dots (QDs), have quickly emerged and exhibited unique opportunities for optoelectronic applications. This is due to their excellent optical and photovoltaic properties as well as composition tunability. Currently, there are only a limited number of publications correlating QD synthesis optimization with relevant device performance. Here, CsPbI3 QDs have been successfully synthesized and displayed improved optoelectrical properties by implementing an in situ ytterbium (Yb) doping strategy during synthesis. Systematic investigations were carried out to examine the effects of Yb-doping. Preliminary experimental results indicated that Yb3+ lanthanide cations could effectively reduce the number of defects and trap states caused by surface and lattice vacancies. This result contributes to an improvement in QD photoluminescence quantum yield (PLQY), material crystallinity, thermal stability and carrier transport. Consequently, the solar cells adopting optimally Yb-doped CsPbI3 QDs achieved the best power conversion efficiency (PCE) of 13.12% and displayed significantly improved storage stability under ambient conditions. These results indicate that in situ doping has great potential to improve the quality of the resultant perovskite QDs. This approach can provide a new path to a breakthrough in QD based solar cell technology.</description><subject>Carrier transport</subject><subject>Cations</subject><subject>Crystal defects</subject><subject>Doping</subject><subject>Energy conversion efficiency</subject><subject>Lattice vacancies</subject><subject>Nanocrystals</subject><subject>Optical properties</subject><subject>Optimization</subject><subject>Optoelectronics</subject><subject>Perovskites</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Quantum dots</subject><subject>Shelf life</subject><subject>Solar cells</subject><subject>Storage stability</subject><subject>Synthesis</subject><subject>Thermal stability</subject><subject>Ytterbium</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9jUtLAzEYRYMoWGo3_oKA69E8JpNkKaVqoaALXZdkktTUMZlOvin03zs-8G7OXRzuReiakltKuL5rNRgiac3NGZoxIkgla92c_3elLtGilD2ZoghptJ6hcRVCbKNPgE1yuICxncfL8mLXHPd-yMfyEcHjw2gSjJ_YZSjYp2_LYXvCMeESYcQnAD_Y-GP0Me1wyAPu3zPkY-7AxBabvu9iayDmVK7QRTBd8Ys_ztHbw-p1-VRtnh_Xy_tNtWOqgUoQIQOtPXHMKGM1C8FIVzechzq0yhHhGkK9aZiTTHkvqWJUay2Vs0Fwy-fo5ne3H_Jh9AW2-zwOabrcMqYpE5Mq-Be711-q</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Shi, Junwei</creator><creator>Li, Fangchao</creator><creator>Yuan, Jianyu</creator><creator>Ling, Xufeng</creator><creator>Zhou, Sijie</creator><creator>Qian, Yuli</creator><creator>Ma, Wanli</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2019</creationdate><title>Efficient and stable CsPbI3 perovskite quantum dots enabled by in situ ytterbium doping for photovoltaic applications</title><author>Shi, Junwei ; Li, Fangchao ; Yuan, Jianyu ; Ling, Xufeng ; Zhou, Sijie ; Qian, Yuli ; Ma, Wanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g286t-5057f14e0d2a8ab92ffa7d4633f4fc8d05d601ea62d728ee7182199978dbf53b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carrier transport</topic><topic>Cations</topic><topic>Crystal defects</topic><topic>Doping</topic><topic>Energy conversion efficiency</topic><topic>Lattice vacancies</topic><topic>Nanocrystals</topic><topic>Optical properties</topic><topic>Optimization</topic><topic>Optoelectronics</topic><topic>Perovskites</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Quantum dots</topic><topic>Shelf life</topic><topic>Solar cells</topic><topic>Storage stability</topic><topic>Synthesis</topic><topic>Thermal stability</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Junwei</creatorcontrib><creatorcontrib>Li, Fangchao</creatorcontrib><creatorcontrib>Yuan, Jianyu</creatorcontrib><creatorcontrib>Ling, Xufeng</creatorcontrib><creatorcontrib>Zhou, Sijie</creatorcontrib><creatorcontrib>Qian, Yuli</creatorcontrib><creatorcontrib>Ma, Wanli</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Junwei</au><au>Li, Fangchao</au><au>Yuan, Jianyu</au><au>Ling, Xufeng</au><au>Zhou, Sijie</au><au>Qian, Yuli</au><au>Ma, Wanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient and stable CsPbI3 perovskite quantum dots enabled by in situ ytterbium doping for photovoltaic applications</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>36</issue><spage>20936</spage><epage>20944</epage><pages>20936-20944</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Colloidal perovskite nanocrystals, or quantum dots (QDs), have quickly emerged and exhibited unique opportunities for optoelectronic applications. This is due to their excellent optical and photovoltaic properties as well as composition tunability. Currently, there are only a limited number of publications correlating QD synthesis optimization with relevant device performance. Here, CsPbI3 QDs have been successfully synthesized and displayed improved optoelectrical properties by implementing an in situ ytterbium (Yb) doping strategy during synthesis. Systematic investigations were carried out to examine the effects of Yb-doping. Preliminary experimental results indicated that Yb3+ lanthanide cations could effectively reduce the number of defects and trap states caused by surface and lattice vacancies. This result contributes to an improvement in QD photoluminescence quantum yield (PLQY), material crystallinity, thermal stability and carrier transport. Consequently, the solar cells adopting optimally Yb-doped CsPbI3 QDs achieved the best power conversion efficiency (PCE) of 13.12% and displayed significantly improved storage stability under ambient conditions. These results indicate that in situ doping has great potential to improve the quality of the resultant perovskite QDs. This approach can provide a new path to a breakthrough in QD based solar cell technology.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta07143a</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (36), p.20936-20944 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2291259785 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Carrier transport Cations Crystal defects Doping Energy conversion efficiency Lattice vacancies Nanocrystals Optical properties Optimization Optoelectronics Perovskites Photoluminescence Photons Photovoltaic cells Photovoltaics Quantum dots Shelf life Solar cells Storage stability Synthesis Thermal stability Ytterbium |
title | Efficient and stable CsPbI3 perovskite quantum dots enabled by in situ ytterbium doping for photovoltaic applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20and%20stable%20CsPbI3%20perovskite%20quantum%20dots%20enabled%20by%20in%20situ%20ytterbium%20doping%20for%20photovoltaic%20applications&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Shi,%20Junwei&rft.date=2019&rft.volume=7&rft.issue=36&rft.spage=20936&rft.epage=20944&rft.pages=20936-20944&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta07143a&rft_dat=%3Cproquest%3E2291259785%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2291259785&rft_id=info:pmid/&rfr_iscdi=true |