HDAC 4/5‐ HMGB 1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury

Histone deacetylases ( HDAC s)‐mediated epigenetic mechanisms play critical roles in the homeostasis of histone acetylation and gene transcription. HDAC inhibitors have displayed neuroprotective properties in animal models for various neurological diseases including Alzheimer's disease and isch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2013-04, Vol.17 (4), p.531-542
Hauptverfasser: He, Min, Zhang, Bin, Wei, Xinbing, Wang, Ziying, Fan, Baoxia, Du, Pengchao, Zhang, Yan, Jian, Wencheng, Chen, Lin, Wang, Linlin, Fang, Hao, Li, Xiang, Wang, Ping‐An, Yi, Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 542
container_issue 4
container_start_page 531
container_title Journal of cellular and molecular medicine
container_volume 17
creator He, Min
Zhang, Bin
Wei, Xinbing
Wang, Ziying
Fan, Baoxia
Du, Pengchao
Zhang, Yan
Jian, Wencheng
Chen, Lin
Wang, Linlin
Fang, Hao
Li, Xiang
Wang, Ping‐An
Yi, Fan
description Histone deacetylases ( HDAC s)‐mediated epigenetic mechanisms play critical roles in the homeostasis of histone acetylation and gene transcription. HDAC inhibitors have displayed neuroprotective properties in animal models for various neurological diseases including Alzheimer's disease and ischaemic stroke. However, some studies have also reported that HDAC enzymes exert protective effects in several pathological conditions including ischaemic stress. The mixed results indicate the specific roles of each HDAC protein in different diseased states. However, the subtypes of HDAC s associated with ischaemic stroke keep unclear. Therefore, in this study, we used an in vivo middle cerebral artery occlusion ( MCAO ) model and in vitro cell cultures by the model of oxygen glucose deprivation to investigate the expression patterns of HDAC s and explore the roles of individual HDAC s in ischaemic stroke. Our results showed that inhibition of NADPH oxidase activity ameliorated cerebral ischaemia/reperfusion (I/R) injury and among Zn 2+ ‐dependent HDAC s, HDAC 4 and HDAC 5 were significantly decreased both in vivo and in vitro , which can be reversed by NADPH oxidase inhibitor apocynin. We further found that both HDAC 4 and HDAC 5 increased cell viability through inhibition of HMGB 1, a central mediator of tissue damage following acute injury, expression and release in PC 12 cells. Our results for the first time provide evidence that NADPH oxidase‐mediated HDAC 4 and HDAC 5 expression contributes to cerebral ischaemia injury via HMGB 1 signalling pathway, suggesting that it is important to elucidate the role of individual HDAC s within the brain, and the development of HDAC inhibitors with improved specificity is required to develop effective therapeutic strategies to treat stroke.
doi_str_mv 10.1111/jcmm.12040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2290444663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2290444663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1043-92f5335bbcef6c373716d7b3afbee026872601f1e276d18215920cfea367c4bb3</originalsourceid><addsrcrecordid>eNotkEtOwzAYhC0EEqWw4QSW2CG19StOsiwFGqTyWMA6sp3fxVEexU4Q2XEEzshJaGlnM7MYjTQfQpeUTOlWs9LU9ZQyIsgRGtEoYRORcnF8yDThySk6C6EkhEvK0xHqs9v5AotZ9Pv9g7PH5Q2mOLh1o6rKNWtcQ-FUBwXWA36a375kuP1yhQqAlencp-sGbNqm8073HQTctdiAB-1VhV0w7wpqp2YeNuBtH1zbYNeUvR_O0YlVVYCLg4_R2_3d6yKbrJ6XD4v5amIoEXySMhtxHmltwErDYx5TWcSaK6sBCJNJzCShlgKLZUETRqOUEWNBcRkboTUfo6v97sa3Hz2ELi_b3m_PhZyxlAghpOTb1vW-ZXwbggebb7yrlR9ySvId1nyHNf_Hyv8AAMprIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290444663</pqid></control><display><type>article</type><title>HDAC 4/5‐ HMGB 1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><creator>He, Min ; Zhang, Bin ; Wei, Xinbing ; Wang, Ziying ; Fan, Baoxia ; Du, Pengchao ; Zhang, Yan ; Jian, Wencheng ; Chen, Lin ; Wang, Linlin ; Fang, Hao ; Li, Xiang ; Wang, Ping‐An ; Yi, Fan</creator><creatorcontrib>He, Min ; Zhang, Bin ; Wei, Xinbing ; Wang, Ziying ; Fan, Baoxia ; Du, Pengchao ; Zhang, Yan ; Jian, Wencheng ; Chen, Lin ; Wang, Linlin ; Fang, Hao ; Li, Xiang ; Wang, Ping‐An ; Yi, Fan</creatorcontrib><description>Histone deacetylases ( HDAC s)‐mediated epigenetic mechanisms play critical roles in the homeostasis of histone acetylation and gene transcription. HDAC inhibitors have displayed neuroprotective properties in animal models for various neurological diseases including Alzheimer's disease and ischaemic stroke. However, some studies have also reported that HDAC enzymes exert protective effects in several pathological conditions including ischaemic stress. The mixed results indicate the specific roles of each HDAC protein in different diseased states. However, the subtypes of HDAC s associated with ischaemic stroke keep unclear. Therefore, in this study, we used an in vivo middle cerebral artery occlusion ( MCAO ) model and in vitro cell cultures by the model of oxygen glucose deprivation to investigate the expression patterns of HDAC s and explore the roles of individual HDAC s in ischaemic stroke. Our results showed that inhibition of NADPH oxidase activity ameliorated cerebral ischaemia/reperfusion (I/R) injury and among Zn 2+ ‐dependent HDAC s, HDAC 4 and HDAC 5 were significantly decreased both in vivo and in vitro , which can be reversed by NADPH oxidase inhibitor apocynin. We further found that both HDAC 4 and HDAC 5 increased cell viability through inhibition of HMGB 1, a central mediator of tissue damage following acute injury, expression and release in PC 12 cells. Our results for the first time provide evidence that NADPH oxidase‐mediated HDAC 4 and HDAC 5 expression contributes to cerebral ischaemia injury via HMGB 1 signalling pathway, suggesting that it is important to elucidate the role of individual HDAC s within the brain, and the development of HDAC inhibitors with improved specificity is required to develop effective therapeutic strategies to treat stroke.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.12040</identifier><language>eng</language><publisher>Chichester: John Wiley &amp; Sons, Inc</publisher><subject>Acetylation ; Alzheimer's disease ; Animal models ; Apoptosis ; Brain research ; Cell viability ; Cerebral blood flow ; DNA methylation ; Epigenetics ; HDAC protein ; Histone deacetylase ; Histones ; HMGB1 protein ; Homeostasis ; Inhibition ; Inhibitors ; Ischemia ; Laboratory animals ; NAD(P)H oxidase ; Neurodegenerative diseases ; Neurological diseases ; Neuroprotection ; Neurosciences ; Occlusion ; Oxidative stress ; Pheochromocytoma cells ; Proteins ; R&amp;D ; Reperfusion ; Research &amp; development ; Signal transduction ; Stroke ; Studies ; Transcription ; Viability ; Zinc</subject><ispartof>Journal of cellular and molecular medicine, 2013-04, Vol.17 (4), p.531-542</ispartof><rights>2013. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1043-92f5335bbcef6c373716d7b3afbee026872601f1e276d18215920cfea367c4bb3</citedby><cites>FETCH-LOGICAL-c1043-92f5335bbcef6c373716d7b3afbee026872601f1e276d18215920cfea367c4bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids></links><search><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Wei, Xinbing</creatorcontrib><creatorcontrib>Wang, Ziying</creatorcontrib><creatorcontrib>Fan, Baoxia</creatorcontrib><creatorcontrib>Du, Pengchao</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Jian, Wencheng</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Wang, Linlin</creatorcontrib><creatorcontrib>Fang, Hao</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Wang, Ping‐An</creatorcontrib><creatorcontrib>Yi, Fan</creatorcontrib><title>HDAC 4/5‐ HMGB 1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury</title><title>Journal of cellular and molecular medicine</title><description>Histone deacetylases ( HDAC s)‐mediated epigenetic mechanisms play critical roles in the homeostasis of histone acetylation and gene transcription. HDAC inhibitors have displayed neuroprotective properties in animal models for various neurological diseases including Alzheimer's disease and ischaemic stroke. However, some studies have also reported that HDAC enzymes exert protective effects in several pathological conditions including ischaemic stress. The mixed results indicate the specific roles of each HDAC protein in different diseased states. However, the subtypes of HDAC s associated with ischaemic stroke keep unclear. Therefore, in this study, we used an in vivo middle cerebral artery occlusion ( MCAO ) model and in vitro cell cultures by the model of oxygen glucose deprivation to investigate the expression patterns of HDAC s and explore the roles of individual HDAC s in ischaemic stroke. Our results showed that inhibition of NADPH oxidase activity ameliorated cerebral ischaemia/reperfusion (I/R) injury and among Zn 2+ ‐dependent HDAC s, HDAC 4 and HDAC 5 were significantly decreased both in vivo and in vitro , which can be reversed by NADPH oxidase inhibitor apocynin. We further found that both HDAC 4 and HDAC 5 increased cell viability through inhibition of HMGB 1, a central mediator of tissue damage following acute injury, expression and release in PC 12 cells. Our results for the first time provide evidence that NADPH oxidase‐mediated HDAC 4 and HDAC 5 expression contributes to cerebral ischaemia injury via HMGB 1 signalling pathway, suggesting that it is important to elucidate the role of individual HDAC s within the brain, and the development of HDAC inhibitors with improved specificity is required to develop effective therapeutic strategies to treat stroke.</description><subject>Acetylation</subject><subject>Alzheimer's disease</subject><subject>Animal models</subject><subject>Apoptosis</subject><subject>Brain research</subject><subject>Cell viability</subject><subject>Cerebral blood flow</subject><subject>DNA methylation</subject><subject>Epigenetics</subject><subject>HDAC protein</subject><subject>Histone deacetylase</subject><subject>Histones</subject><subject>HMGB1 protein</subject><subject>Homeostasis</subject><subject>Inhibition</subject><subject>Inhibitors</subject><subject>Ischemia</subject><subject>Laboratory animals</subject><subject>NAD(P)H oxidase</subject><subject>Neurodegenerative diseases</subject><subject>Neurological diseases</subject><subject>Neuroprotection</subject><subject>Neurosciences</subject><subject>Occlusion</subject><subject>Oxidative stress</subject><subject>Pheochromocytoma cells</subject><subject>Proteins</subject><subject>R&amp;D</subject><subject>Reperfusion</subject><subject>Research &amp; development</subject><subject>Signal transduction</subject><subject>Stroke</subject><subject>Studies</subject><subject>Transcription</subject><subject>Viability</subject><subject>Zinc</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkEtOwzAYhC0EEqWw4QSW2CG19StOsiwFGqTyWMA6sp3fxVEexU4Q2XEEzshJaGlnM7MYjTQfQpeUTOlWs9LU9ZQyIsgRGtEoYRORcnF8yDThySk6C6EkhEvK0xHqs9v5AotZ9Pv9g7PH5Q2mOLh1o6rKNWtcQ-FUBwXWA36a375kuP1yhQqAlencp-sGbNqm8073HQTctdiAB-1VhV0w7wpqp2YeNuBtH1zbYNeUvR_O0YlVVYCLg4_R2_3d6yKbrJ6XD4v5amIoEXySMhtxHmltwErDYx5TWcSaK6sBCJNJzCShlgKLZUETRqOUEWNBcRkboTUfo6v97sa3Hz2ELi_b3m_PhZyxlAghpOTb1vW-ZXwbggebb7yrlR9ySvId1nyHNf_Hyv8AAMprIw</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>He, Min</creator><creator>Zhang, Bin</creator><creator>Wei, Xinbing</creator><creator>Wang, Ziying</creator><creator>Fan, Baoxia</creator><creator>Du, Pengchao</creator><creator>Zhang, Yan</creator><creator>Jian, Wencheng</creator><creator>Chen, Lin</creator><creator>Wang, Linlin</creator><creator>Fang, Hao</creator><creator>Li, Xiang</creator><creator>Wang, Ping‐An</creator><creator>Yi, Fan</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>201304</creationdate><title>HDAC 4/5‐ HMGB 1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury</title><author>He, Min ; Zhang, Bin ; Wei, Xinbing ; Wang, Ziying ; Fan, Baoxia ; Du, Pengchao ; Zhang, Yan ; Jian, Wencheng ; Chen, Lin ; Wang, Linlin ; Fang, Hao ; Li, Xiang ; Wang, Ping‐An ; Yi, Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1043-92f5335bbcef6c373716d7b3afbee026872601f1e276d18215920cfea367c4bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acetylation</topic><topic>Alzheimer's disease</topic><topic>Animal models</topic><topic>Apoptosis</topic><topic>Brain research</topic><topic>Cell viability</topic><topic>Cerebral blood flow</topic><topic>DNA methylation</topic><topic>Epigenetics</topic><topic>HDAC protein</topic><topic>Histone deacetylase</topic><topic>Histones</topic><topic>HMGB1 protein</topic><topic>Homeostasis</topic><topic>Inhibition</topic><topic>Inhibitors</topic><topic>Ischemia</topic><topic>Laboratory animals</topic><topic>NAD(P)H oxidase</topic><topic>Neurodegenerative diseases</topic><topic>Neurological diseases</topic><topic>Neuroprotection</topic><topic>Neurosciences</topic><topic>Occlusion</topic><topic>Oxidative stress</topic><topic>Pheochromocytoma cells</topic><topic>Proteins</topic><topic>R&amp;D</topic><topic>Reperfusion</topic><topic>Research &amp; development</topic><topic>Signal transduction</topic><topic>Stroke</topic><topic>Studies</topic><topic>Transcription</topic><topic>Viability</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Wei, Xinbing</creatorcontrib><creatorcontrib>Wang, Ziying</creatorcontrib><creatorcontrib>Fan, Baoxia</creatorcontrib><creatorcontrib>Du, Pengchao</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Jian, Wencheng</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Wang, Linlin</creatorcontrib><creatorcontrib>Fang, Hao</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Wang, Ping‐An</creatorcontrib><creatorcontrib>Yi, Fan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Min</au><au>Zhang, Bin</au><au>Wei, Xinbing</au><au>Wang, Ziying</au><au>Fan, Baoxia</au><au>Du, Pengchao</au><au>Zhang, Yan</au><au>Jian, Wencheng</au><au>Chen, Lin</au><au>Wang, Linlin</au><au>Fang, Hao</au><au>Li, Xiang</au><au>Wang, Ping‐An</au><au>Yi, Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HDAC 4/5‐ HMGB 1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><date>2013-04</date><risdate>2013</risdate><volume>17</volume><issue>4</issue><spage>531</spage><epage>542</epage><pages>531-542</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Histone deacetylases ( HDAC s)‐mediated epigenetic mechanisms play critical roles in the homeostasis of histone acetylation and gene transcription. HDAC inhibitors have displayed neuroprotective properties in animal models for various neurological diseases including Alzheimer's disease and ischaemic stroke. However, some studies have also reported that HDAC enzymes exert protective effects in several pathological conditions including ischaemic stress. The mixed results indicate the specific roles of each HDAC protein in different diseased states. However, the subtypes of HDAC s associated with ischaemic stroke keep unclear. Therefore, in this study, we used an in vivo middle cerebral artery occlusion ( MCAO ) model and in vitro cell cultures by the model of oxygen glucose deprivation to investigate the expression patterns of HDAC s and explore the roles of individual HDAC s in ischaemic stroke. Our results showed that inhibition of NADPH oxidase activity ameliorated cerebral ischaemia/reperfusion (I/R) injury and among Zn 2+ ‐dependent HDAC s, HDAC 4 and HDAC 5 were significantly decreased both in vivo and in vitro , which can be reversed by NADPH oxidase inhibitor apocynin. We further found that both HDAC 4 and HDAC 5 increased cell viability through inhibition of HMGB 1, a central mediator of tissue damage following acute injury, expression and release in PC 12 cells. Our results for the first time provide evidence that NADPH oxidase‐mediated HDAC 4 and HDAC 5 expression contributes to cerebral ischaemia injury via HMGB 1 signalling pathway, suggesting that it is important to elucidate the role of individual HDAC s within the brain, and the development of HDAC inhibitors with improved specificity is required to develop effective therapeutic strategies to treat stroke.</abstract><cop>Chichester</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/jcmm.12040</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2013-04, Vol.17 (4), p.531-542
issn 1582-1838
1582-4934
language eng
recordid cdi_proquest_journals_2290444663
source DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; PubMed Central
subjects Acetylation
Alzheimer's disease
Animal models
Apoptosis
Brain research
Cell viability
Cerebral blood flow
DNA methylation
Epigenetics
HDAC protein
Histone deacetylase
Histones
HMGB1 protein
Homeostasis
Inhibition
Inhibitors
Ischemia
Laboratory animals
NAD(P)H oxidase
Neurodegenerative diseases
Neurological diseases
Neuroprotection
Neurosciences
Occlusion
Oxidative stress
Pheochromocytoma cells
Proteins
R&D
Reperfusion
Research & development
Signal transduction
Stroke
Studies
Transcription
Viability
Zinc
title HDAC 4/5‐ HMGB 1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HDAC%204/5%E2%80%90%20HMGB%201%20signalling%20mediated%20by%20NADPH%20oxidase%20activity%20contributes%20to%20cerebral%20ischaemia/reperfusion%20injury&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=He,%20Min&rft.date=2013-04&rft.volume=17&rft.issue=4&rft.spage=531&rft.epage=542&rft.pages=531-542&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.12040&rft_dat=%3Cproquest_cross%3E2290444663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2290444663&rft_id=info:pmid/&rfr_iscdi=true