HDAC 4/5‐ HMGB 1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury
Histone deacetylases ( HDAC s)‐mediated epigenetic mechanisms play critical roles in the homeostasis of histone acetylation and gene transcription. HDAC inhibitors have displayed neuroprotective properties in animal models for various neurological diseases including Alzheimer's disease and isch...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2013-04, Vol.17 (4), p.531-542 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 542 |
---|---|
container_issue | 4 |
container_start_page | 531 |
container_title | Journal of cellular and molecular medicine |
container_volume | 17 |
creator | He, Min Zhang, Bin Wei, Xinbing Wang, Ziying Fan, Baoxia Du, Pengchao Zhang, Yan Jian, Wencheng Chen, Lin Wang, Linlin Fang, Hao Li, Xiang Wang, Ping‐An Yi, Fan |
description | Histone deacetylases (
HDAC
s)‐mediated epigenetic mechanisms play critical roles in the homeostasis of histone acetylation and gene transcription.
HDAC
inhibitors have displayed neuroprotective properties in animal models for various neurological diseases including Alzheimer's disease and ischaemic stroke. However, some studies have also reported that
HDAC
enzymes exert protective effects in several pathological conditions including ischaemic stress. The mixed results indicate the specific roles of each
HDAC
protein in different diseased states. However, the subtypes of
HDAC
s associated with ischaemic stroke keep unclear. Therefore, in this study, we used an
in vivo
middle cerebral artery occlusion (
MCAO
) model and
in vitro
cell cultures by the model of oxygen glucose deprivation to investigate the expression patterns of
HDAC
s and explore the roles of individual
HDAC
s in ischaemic stroke. Our results showed that inhibition of
NADPH
oxidase activity ameliorated cerebral ischaemia/reperfusion (I/R) injury and among Zn
2+
‐dependent
HDAC
s,
HDAC
4 and
HDAC
5 were significantly decreased both
in vivo
and
in vitro
, which can be reversed by
NADPH
oxidase inhibitor apocynin. We further found that both
HDAC
4 and
HDAC
5 increased cell viability through inhibition of
HMGB
1, a central mediator of tissue damage following acute injury, expression and release in
PC
12 cells. Our results for the first time provide evidence that
NADPH
oxidase‐mediated
HDAC
4 and
HDAC
5 expression contributes to cerebral ischaemia injury
via
HMGB
1 signalling pathway, suggesting that it is important to elucidate the role of individual
HDAC
s within the brain, and the development of
HDAC
inhibitors with improved specificity is required to develop effective therapeutic strategies to treat stroke. |
doi_str_mv | 10.1111/jcmm.12040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2290444663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2290444663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1043-92f5335bbcef6c373716d7b3afbee026872601f1e276d18215920cfea367c4bb3</originalsourceid><addsrcrecordid>eNotkEtOwzAYhC0EEqWw4QSW2CG19StOsiwFGqTyWMA6sp3fxVEexU4Q2XEEzshJaGlnM7MYjTQfQpeUTOlWs9LU9ZQyIsgRGtEoYRORcnF8yDThySk6C6EkhEvK0xHqs9v5AotZ9Pv9g7PH5Q2mOLh1o6rKNWtcQ-FUBwXWA36a375kuP1yhQqAlencp-sGbNqm8073HQTctdiAB-1VhV0w7wpqp2YeNuBtH1zbYNeUvR_O0YlVVYCLg4_R2_3d6yKbrJ6XD4v5amIoEXySMhtxHmltwErDYx5TWcSaK6sBCJNJzCShlgKLZUETRqOUEWNBcRkboTUfo6v97sa3Hz2ELi_b3m_PhZyxlAghpOTb1vW-ZXwbggebb7yrlR9ySvId1nyHNf_Hyv8AAMprIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290444663</pqid></control><display><type>article</type><title>HDAC 4/5‐ HMGB 1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><creator>He, Min ; Zhang, Bin ; Wei, Xinbing ; Wang, Ziying ; Fan, Baoxia ; Du, Pengchao ; Zhang, Yan ; Jian, Wencheng ; Chen, Lin ; Wang, Linlin ; Fang, Hao ; Li, Xiang ; Wang, Ping‐An ; Yi, Fan</creator><creatorcontrib>He, Min ; Zhang, Bin ; Wei, Xinbing ; Wang, Ziying ; Fan, Baoxia ; Du, Pengchao ; Zhang, Yan ; Jian, Wencheng ; Chen, Lin ; Wang, Linlin ; Fang, Hao ; Li, Xiang ; Wang, Ping‐An ; Yi, Fan</creatorcontrib><description>Histone deacetylases (
HDAC
s)‐mediated epigenetic mechanisms play critical roles in the homeostasis of histone acetylation and gene transcription.
HDAC
inhibitors have displayed neuroprotective properties in animal models for various neurological diseases including Alzheimer's disease and ischaemic stroke. However, some studies have also reported that
HDAC
enzymes exert protective effects in several pathological conditions including ischaemic stress. The mixed results indicate the specific roles of each
HDAC
protein in different diseased states. However, the subtypes of
HDAC
s associated with ischaemic stroke keep unclear. Therefore, in this study, we used an
in vivo
middle cerebral artery occlusion (
MCAO
) model and
in vitro
cell cultures by the model of oxygen glucose deprivation to investigate the expression patterns of
HDAC
s and explore the roles of individual
HDAC
s in ischaemic stroke. Our results showed that inhibition of
NADPH
oxidase activity ameliorated cerebral ischaemia/reperfusion (I/R) injury and among Zn
2+
‐dependent
HDAC
s,
HDAC
4 and
HDAC
5 were significantly decreased both
in vivo
and
in vitro
, which can be reversed by
NADPH
oxidase inhibitor apocynin. We further found that both
HDAC
4 and
HDAC
5 increased cell viability through inhibition of
HMGB
1, a central mediator of tissue damage following acute injury, expression and release in
PC
12 cells. Our results for the first time provide evidence that
NADPH
oxidase‐mediated
HDAC
4 and
HDAC
5 expression contributes to cerebral ischaemia injury
via
HMGB
1 signalling pathway, suggesting that it is important to elucidate the role of individual
HDAC
s within the brain, and the development of
HDAC
inhibitors with improved specificity is required to develop effective therapeutic strategies to treat stroke.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.12040</identifier><language>eng</language><publisher>Chichester: John Wiley & Sons, Inc</publisher><subject>Acetylation ; Alzheimer's disease ; Animal models ; Apoptosis ; Brain research ; Cell viability ; Cerebral blood flow ; DNA methylation ; Epigenetics ; HDAC protein ; Histone deacetylase ; Histones ; HMGB1 protein ; Homeostasis ; Inhibition ; Inhibitors ; Ischemia ; Laboratory animals ; NAD(P)H oxidase ; Neurodegenerative diseases ; Neurological diseases ; Neuroprotection ; Neurosciences ; Occlusion ; Oxidative stress ; Pheochromocytoma cells ; Proteins ; R&D ; Reperfusion ; Research & development ; Signal transduction ; Stroke ; Studies ; Transcription ; Viability ; Zinc</subject><ispartof>Journal of cellular and molecular medicine, 2013-04, Vol.17 (4), p.531-542</ispartof><rights>2013. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1043-92f5335bbcef6c373716d7b3afbee026872601f1e276d18215920cfea367c4bb3</citedby><cites>FETCH-LOGICAL-c1043-92f5335bbcef6c373716d7b3afbee026872601f1e276d18215920cfea367c4bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids></links><search><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Wei, Xinbing</creatorcontrib><creatorcontrib>Wang, Ziying</creatorcontrib><creatorcontrib>Fan, Baoxia</creatorcontrib><creatorcontrib>Du, Pengchao</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Jian, Wencheng</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Wang, Linlin</creatorcontrib><creatorcontrib>Fang, Hao</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Wang, Ping‐An</creatorcontrib><creatorcontrib>Yi, Fan</creatorcontrib><title>HDAC 4/5‐ HMGB 1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury</title><title>Journal of cellular and molecular medicine</title><description>Histone deacetylases (
HDAC
s)‐mediated epigenetic mechanisms play critical roles in the homeostasis of histone acetylation and gene transcription.
HDAC
inhibitors have displayed neuroprotective properties in animal models for various neurological diseases including Alzheimer's disease and ischaemic stroke. However, some studies have also reported that
HDAC
enzymes exert protective effects in several pathological conditions including ischaemic stress. The mixed results indicate the specific roles of each
HDAC
protein in different diseased states. However, the subtypes of
HDAC
s associated with ischaemic stroke keep unclear. Therefore, in this study, we used an
in vivo
middle cerebral artery occlusion (
MCAO
) model and
in vitro
cell cultures by the model of oxygen glucose deprivation to investigate the expression patterns of
HDAC
s and explore the roles of individual
HDAC
s in ischaemic stroke. Our results showed that inhibition of
NADPH
oxidase activity ameliorated cerebral ischaemia/reperfusion (I/R) injury and among Zn
2+
‐dependent
HDAC
s,
HDAC
4 and
HDAC
5 were significantly decreased both
in vivo
and
in vitro
, which can be reversed by
NADPH
oxidase inhibitor apocynin. We further found that both
HDAC
4 and
HDAC
5 increased cell viability through inhibition of
HMGB
1, a central mediator of tissue damage following acute injury, expression and release in
PC
12 cells. Our results for the first time provide evidence that
NADPH
oxidase‐mediated
HDAC
4 and
HDAC
5 expression contributes to cerebral ischaemia injury
via
HMGB
1 signalling pathway, suggesting that it is important to elucidate the role of individual
HDAC
s within the brain, and the development of
HDAC
inhibitors with improved specificity is required to develop effective therapeutic strategies to treat stroke.</description><subject>Acetylation</subject><subject>Alzheimer's disease</subject><subject>Animal models</subject><subject>Apoptosis</subject><subject>Brain research</subject><subject>Cell viability</subject><subject>Cerebral blood flow</subject><subject>DNA methylation</subject><subject>Epigenetics</subject><subject>HDAC protein</subject><subject>Histone deacetylase</subject><subject>Histones</subject><subject>HMGB1 protein</subject><subject>Homeostasis</subject><subject>Inhibition</subject><subject>Inhibitors</subject><subject>Ischemia</subject><subject>Laboratory animals</subject><subject>NAD(P)H oxidase</subject><subject>Neurodegenerative diseases</subject><subject>Neurological diseases</subject><subject>Neuroprotection</subject><subject>Neurosciences</subject><subject>Occlusion</subject><subject>Oxidative stress</subject><subject>Pheochromocytoma cells</subject><subject>Proteins</subject><subject>R&D</subject><subject>Reperfusion</subject><subject>Research & development</subject><subject>Signal transduction</subject><subject>Stroke</subject><subject>Studies</subject><subject>Transcription</subject><subject>Viability</subject><subject>Zinc</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkEtOwzAYhC0EEqWw4QSW2CG19StOsiwFGqTyWMA6sp3fxVEexU4Q2XEEzshJaGlnM7MYjTQfQpeUTOlWs9LU9ZQyIsgRGtEoYRORcnF8yDThySk6C6EkhEvK0xHqs9v5AotZ9Pv9g7PH5Q2mOLh1o6rKNWtcQ-FUBwXWA36a375kuP1yhQqAlencp-sGbNqm8073HQTctdiAB-1VhV0w7wpqp2YeNuBtH1zbYNeUvR_O0YlVVYCLg4_R2_3d6yKbrJ6XD4v5amIoEXySMhtxHmltwErDYx5TWcSaK6sBCJNJzCShlgKLZUETRqOUEWNBcRkboTUfo6v97sa3Hz2ELi_b3m_PhZyxlAghpOTb1vW-ZXwbggebb7yrlR9ySvId1nyHNf_Hyv8AAMprIw</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>He, Min</creator><creator>Zhang, Bin</creator><creator>Wei, Xinbing</creator><creator>Wang, Ziying</creator><creator>Fan, Baoxia</creator><creator>Du, Pengchao</creator><creator>Zhang, Yan</creator><creator>Jian, Wencheng</creator><creator>Chen, Lin</creator><creator>Wang, Linlin</creator><creator>Fang, Hao</creator><creator>Li, Xiang</creator><creator>Wang, Ping‐An</creator><creator>Yi, Fan</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>201304</creationdate><title>HDAC 4/5‐ HMGB 1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury</title><author>He, Min ; Zhang, Bin ; Wei, Xinbing ; Wang, Ziying ; Fan, Baoxia ; Du, Pengchao ; Zhang, Yan ; Jian, Wencheng ; Chen, Lin ; Wang, Linlin ; Fang, Hao ; Li, Xiang ; Wang, Ping‐An ; Yi, Fan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1043-92f5335bbcef6c373716d7b3afbee026872601f1e276d18215920cfea367c4bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acetylation</topic><topic>Alzheimer's disease</topic><topic>Animal models</topic><topic>Apoptosis</topic><topic>Brain research</topic><topic>Cell viability</topic><topic>Cerebral blood flow</topic><topic>DNA methylation</topic><topic>Epigenetics</topic><topic>HDAC protein</topic><topic>Histone deacetylase</topic><topic>Histones</topic><topic>HMGB1 protein</topic><topic>Homeostasis</topic><topic>Inhibition</topic><topic>Inhibitors</topic><topic>Ischemia</topic><topic>Laboratory animals</topic><topic>NAD(P)H oxidase</topic><topic>Neurodegenerative diseases</topic><topic>Neurological diseases</topic><topic>Neuroprotection</topic><topic>Neurosciences</topic><topic>Occlusion</topic><topic>Oxidative stress</topic><topic>Pheochromocytoma cells</topic><topic>Proteins</topic><topic>R&D</topic><topic>Reperfusion</topic><topic>Research & development</topic><topic>Signal transduction</topic><topic>Stroke</topic><topic>Studies</topic><topic>Transcription</topic><topic>Viability</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Wei, Xinbing</creatorcontrib><creatorcontrib>Wang, Ziying</creatorcontrib><creatorcontrib>Fan, Baoxia</creatorcontrib><creatorcontrib>Du, Pengchao</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Jian, Wencheng</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Wang, Linlin</creatorcontrib><creatorcontrib>Fang, Hao</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Wang, Ping‐An</creatorcontrib><creatorcontrib>Yi, Fan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Min</au><au>Zhang, Bin</au><au>Wei, Xinbing</au><au>Wang, Ziying</au><au>Fan, Baoxia</au><au>Du, Pengchao</au><au>Zhang, Yan</au><au>Jian, Wencheng</au><au>Chen, Lin</au><au>Wang, Linlin</au><au>Fang, Hao</au><au>Li, Xiang</au><au>Wang, Ping‐An</au><au>Yi, Fan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HDAC 4/5‐ HMGB 1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><date>2013-04</date><risdate>2013</risdate><volume>17</volume><issue>4</issue><spage>531</spage><epage>542</epage><pages>531-542</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Histone deacetylases (
HDAC
s)‐mediated epigenetic mechanisms play critical roles in the homeostasis of histone acetylation and gene transcription.
HDAC
inhibitors have displayed neuroprotective properties in animal models for various neurological diseases including Alzheimer's disease and ischaemic stroke. However, some studies have also reported that
HDAC
enzymes exert protective effects in several pathological conditions including ischaemic stress. The mixed results indicate the specific roles of each
HDAC
protein in different diseased states. However, the subtypes of
HDAC
s associated with ischaemic stroke keep unclear. Therefore, in this study, we used an
in vivo
middle cerebral artery occlusion (
MCAO
) model and
in vitro
cell cultures by the model of oxygen glucose deprivation to investigate the expression patterns of
HDAC
s and explore the roles of individual
HDAC
s in ischaemic stroke. Our results showed that inhibition of
NADPH
oxidase activity ameliorated cerebral ischaemia/reperfusion (I/R) injury and among Zn
2+
‐dependent
HDAC
s,
HDAC
4 and
HDAC
5 were significantly decreased both
in vivo
and
in vitro
, which can be reversed by
NADPH
oxidase inhibitor apocynin. We further found that both
HDAC
4 and
HDAC
5 increased cell viability through inhibition of
HMGB
1, a central mediator of tissue damage following acute injury, expression and release in
PC
12 cells. Our results for the first time provide evidence that
NADPH
oxidase‐mediated
HDAC
4 and
HDAC
5 expression contributes to cerebral ischaemia injury
via
HMGB
1 signalling pathway, suggesting that it is important to elucidate the role of individual
HDAC
s within the brain, and the development of
HDAC
inhibitors with improved specificity is required to develop effective therapeutic strategies to treat stroke.</abstract><cop>Chichester</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1111/jcmm.12040</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2013-04, Vol.17 (4), p.531-542 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_proquest_journals_2290444663 |
source | DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; PubMed Central |
subjects | Acetylation Alzheimer's disease Animal models Apoptosis Brain research Cell viability Cerebral blood flow DNA methylation Epigenetics HDAC protein Histone deacetylase Histones HMGB1 protein Homeostasis Inhibition Inhibitors Ischemia Laboratory animals NAD(P)H oxidase Neurodegenerative diseases Neurological diseases Neuroprotection Neurosciences Occlusion Oxidative stress Pheochromocytoma cells Proteins R&D Reperfusion Research & development Signal transduction Stroke Studies Transcription Viability Zinc |
title | HDAC 4/5‐ HMGB 1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HDAC%204/5%E2%80%90%20HMGB%201%20signalling%20mediated%20by%20NADPH%20oxidase%20activity%20contributes%20to%20cerebral%20ischaemia/reperfusion%20injury&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=He,%20Min&rft.date=2013-04&rft.volume=17&rft.issue=4&rft.spage=531&rft.epage=542&rft.pages=531-542&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.12040&rft_dat=%3Cproquest_cross%3E2290444663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2290444663&rft_id=info:pmid/&rfr_iscdi=true |