Counterfactual Cross-Validation: Stable Model Selection Procedure for Causal Inference Models

We study the model selection problem in conditional average treatment effect (CATE) prediction. Unlike previous works on this topic, we focus on preserving the rank order of the performance of candidate CATE predictors to enable accurate and stable model selection. To this end, we analyze the model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-07
Hauptverfasser: Saito, Yuta, Yasui, Shota
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Saito, Yuta
Yasui, Shota
description We study the model selection problem in conditional average treatment effect (CATE) prediction. Unlike previous works on this topic, we focus on preserving the rank order of the performance of candidate CATE predictors to enable accurate and stable model selection. To this end, we analyze the model performance ranking problem and formulate guidelines to obtain a better evaluation metric. We then propose a novel metric that can identify the ranking of the performance of CATE predictors with high confidence. Empirical evaluations demonstrate that our metric outperforms existing metrics in both model selection and hyperparameter tuning tasks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2290227702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2290227702</sourcerecordid><originalsourceid>FETCH-proquest_journals_22902277023</originalsourceid><addsrcrecordid>eNqNi8EKwjAQBYMgWLT_EPBciFtr1WtQ9CAIijcpMd1AS0g0m_y_FfoBnh7MzJuwDMpyVWzXADOWE_VCCNjUUFVlxp7SJxcxGKVjUpbL4ImKh7Jdq2Ln3Z7fonpZ5BffouU3tKh_nF-D19imgNz4wKVKNLzPzmBAp8ecFmxqlCXMx52z5fFwl6fiHfwnIcWm9ym4QTUAOwFQ1wLK_6ovFcJDrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290227702</pqid></control><display><type>article</type><title>Counterfactual Cross-Validation: Stable Model Selection Procedure for Causal Inference Models</title><source>Free E- Journals</source><creator>Saito, Yuta ; Yasui, Shota</creator><creatorcontrib>Saito, Yuta ; Yasui, Shota</creatorcontrib><description>We study the model selection problem in conditional average treatment effect (CATE) prediction. Unlike previous works on this topic, we focus on preserving the rank order of the performance of candidate CATE predictors to enable accurate and stable model selection. To this end, we analyze the model performance ranking problem and formulate guidelines to obtain a better evaluation metric. We then propose a novel metric that can identify the ranking of the performance of CATE predictors with high confidence. Empirical evaluations demonstrate that our metric outperforms existing metrics in both model selection and hyperparameter tuning tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Candidates ; Tuning ; Upper bounds</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Saito, Yuta</creatorcontrib><creatorcontrib>Yasui, Shota</creatorcontrib><title>Counterfactual Cross-Validation: Stable Model Selection Procedure for Causal Inference Models</title><title>arXiv.org</title><description>We study the model selection problem in conditional average treatment effect (CATE) prediction. Unlike previous works on this topic, we focus on preserving the rank order of the performance of candidate CATE predictors to enable accurate and stable model selection. To this end, we analyze the model performance ranking problem and formulate guidelines to obtain a better evaluation metric. We then propose a novel metric that can identify the ranking of the performance of CATE predictors with high confidence. Empirical evaluations demonstrate that our metric outperforms existing metrics in both model selection and hyperparameter tuning tasks.</description><subject>Candidates</subject><subject>Tuning</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi8EKwjAQBYMgWLT_EPBciFtr1WtQ9CAIijcpMd1AS0g0m_y_FfoBnh7MzJuwDMpyVWzXADOWE_VCCNjUUFVlxp7SJxcxGKVjUpbL4ImKh7Jdq2Ln3Z7fonpZ5BffouU3tKh_nF-D19imgNz4wKVKNLzPzmBAp8ecFmxqlCXMx52z5fFwl6fiHfwnIcWm9ym4QTUAOwFQ1wLK_6ovFcJDrg</recordid><startdate>20200716</startdate><enddate>20200716</enddate><creator>Saito, Yuta</creator><creator>Yasui, Shota</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200716</creationdate><title>Counterfactual Cross-Validation: Stable Model Selection Procedure for Causal Inference Models</title><author>Saito, Yuta ; Yasui, Shota</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22902277023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Candidates</topic><topic>Tuning</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Saito, Yuta</creatorcontrib><creatorcontrib>Yasui, Shota</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saito, Yuta</au><au>Yasui, Shota</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Counterfactual Cross-Validation: Stable Model Selection Procedure for Causal Inference Models</atitle><jtitle>arXiv.org</jtitle><date>2020-07-16</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We study the model selection problem in conditional average treatment effect (CATE) prediction. Unlike previous works on this topic, we focus on preserving the rank order of the performance of candidate CATE predictors to enable accurate and stable model selection. To this end, we analyze the model performance ranking problem and formulate guidelines to obtain a better evaluation metric. We then propose a novel metric that can identify the ranking of the performance of CATE predictors with high confidence. Empirical evaluations demonstrate that our metric outperforms existing metrics in both model selection and hyperparameter tuning tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2290227702
source Free E- Journals
subjects Candidates
Tuning
Upper bounds
title Counterfactual Cross-Validation: Stable Model Selection Procedure for Causal Inference Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Counterfactual%20Cross-Validation:%20Stable%20Model%20Selection%20Procedure%20for%20Causal%20Inference%20Models&rft.jtitle=arXiv.org&rft.au=Saito,%20Yuta&rft.date=2020-07-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2290227702%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2290227702&rft_id=info:pmid/&rfr_iscdi=true