Counterfactual Cross-Validation: Stable Model Selection Procedure for Causal Inference Models
We study the model selection problem in conditional average treatment effect (CATE) prediction. Unlike previous works on this topic, we focus on preserving the rank order of the performance of candidate CATE predictors to enable accurate and stable model selection. To this end, we analyze the model...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Saito, Yuta Yasui, Shota |
description | We study the model selection problem in conditional average treatment effect (CATE) prediction. Unlike previous works on this topic, we focus on preserving the rank order of the performance of candidate CATE predictors to enable accurate and stable model selection. To this end, we analyze the model performance ranking problem and formulate guidelines to obtain a better evaluation metric. We then propose a novel metric that can identify the ranking of the performance of CATE predictors with high confidence. Empirical evaluations demonstrate that our metric outperforms existing metrics in both model selection and hyperparameter tuning tasks. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2290227702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2290227702</sourcerecordid><originalsourceid>FETCH-proquest_journals_22902277023</originalsourceid><addsrcrecordid>eNqNi8EKwjAQBYMgWLT_EPBciFtr1WtQ9CAIijcpMd1AS0g0m_y_FfoBnh7MzJuwDMpyVWzXADOWE_VCCNjUUFVlxp7SJxcxGKVjUpbL4ImKh7Jdq2Ln3Z7fonpZ5BffouU3tKh_nF-D19imgNz4wKVKNLzPzmBAp8ecFmxqlCXMx52z5fFwl6fiHfwnIcWm9ym4QTUAOwFQ1wLK_6ovFcJDrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290227702</pqid></control><display><type>article</type><title>Counterfactual Cross-Validation: Stable Model Selection Procedure for Causal Inference Models</title><source>Free E- Journals</source><creator>Saito, Yuta ; Yasui, Shota</creator><creatorcontrib>Saito, Yuta ; Yasui, Shota</creatorcontrib><description>We study the model selection problem in conditional average treatment effect (CATE) prediction. Unlike previous works on this topic, we focus on preserving the rank order of the performance of candidate CATE predictors to enable accurate and stable model selection. To this end, we analyze the model performance ranking problem and formulate guidelines to obtain a better evaluation metric. We then propose a novel metric that can identify the ranking of the performance of CATE predictors with high confidence. Empirical evaluations demonstrate that our metric outperforms existing metrics in both model selection and hyperparameter tuning tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Candidates ; Tuning ; Upper bounds</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Saito, Yuta</creatorcontrib><creatorcontrib>Yasui, Shota</creatorcontrib><title>Counterfactual Cross-Validation: Stable Model Selection Procedure for Causal Inference Models</title><title>arXiv.org</title><description>We study the model selection problem in conditional average treatment effect (CATE) prediction. Unlike previous works on this topic, we focus on preserving the rank order of the performance of candidate CATE predictors to enable accurate and stable model selection. To this end, we analyze the model performance ranking problem and formulate guidelines to obtain a better evaluation metric. We then propose a novel metric that can identify the ranking of the performance of CATE predictors with high confidence. Empirical evaluations demonstrate that our metric outperforms existing metrics in both model selection and hyperparameter tuning tasks.</description><subject>Candidates</subject><subject>Tuning</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi8EKwjAQBYMgWLT_EPBciFtr1WtQ9CAIijcpMd1AS0g0m_y_FfoBnh7MzJuwDMpyVWzXADOWE_VCCNjUUFVlxp7SJxcxGKVjUpbL4ImKh7Jdq2Ln3Z7fonpZ5BffouU3tKh_nF-D19imgNz4wKVKNLzPzmBAp8ecFmxqlCXMx52z5fFwl6fiHfwnIcWm9ym4QTUAOwFQ1wLK_6ovFcJDrg</recordid><startdate>20200716</startdate><enddate>20200716</enddate><creator>Saito, Yuta</creator><creator>Yasui, Shota</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200716</creationdate><title>Counterfactual Cross-Validation: Stable Model Selection Procedure for Causal Inference Models</title><author>Saito, Yuta ; Yasui, Shota</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22902277023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Candidates</topic><topic>Tuning</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Saito, Yuta</creatorcontrib><creatorcontrib>Yasui, Shota</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saito, Yuta</au><au>Yasui, Shota</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Counterfactual Cross-Validation: Stable Model Selection Procedure for Causal Inference Models</atitle><jtitle>arXiv.org</jtitle><date>2020-07-16</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We study the model selection problem in conditional average treatment effect (CATE) prediction. Unlike previous works on this topic, we focus on preserving the rank order of the performance of candidate CATE predictors to enable accurate and stable model selection. To this end, we analyze the model performance ranking problem and formulate guidelines to obtain a better evaluation metric. We then propose a novel metric that can identify the ranking of the performance of CATE predictors with high confidence. Empirical evaluations demonstrate that our metric outperforms existing metrics in both model selection and hyperparameter tuning tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2290227702 |
source | Free E- Journals |
subjects | Candidates Tuning Upper bounds |
title | Counterfactual Cross-Validation: Stable Model Selection Procedure for Causal Inference Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Counterfactual%20Cross-Validation:%20Stable%20Model%20Selection%20Procedure%20for%20Causal%20Inference%20Models&rft.jtitle=arXiv.org&rft.au=Saito,%20Yuta&rft.date=2020-07-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2290227702%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2290227702&rft_id=info:pmid/&rfr_iscdi=true |