Inference for subvectors and other functions of partially identified parameters in moment inequality models
This paper introduces a bootstrap-based inference method for functions of the parameter vector in a moment (in)equality model. These functions are restricted to be linear for two-sided testing problems, but may be nonlinear for one-sided testing problems. In the most common case, this function selec...
Gespeichert in:
Veröffentlicht in: | Quantitative economics 2017-03, Vol.8 (1), p.1-38 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Quantitative economics |
container_volume | 8 |
creator | Bugni, Federico A Canay, Ivan A Shi, Xiaoxia |
description | This paper introduces a bootstrap-based inference method for functions of the parameter vector in a moment (in)equality model. These functions are restricted to be linear for two-sided testing problems, but may be nonlinear for one-sided testing problems. In the most common case, this function selects a subvector of the parameter, such as a single component. The new inference method we propose controls asymptotic size uniformly over a large class of data distributions and improves upon the two existing methods that deliver uniform size control for this type of problem: projection-based and subsampling inference. Relative to projection-based procedures, our method presents three advantages: (i) it weakly dominates in terms of finite sample power, (ii) it strictly dominates in terms of asymptotic power, and (iii) it is typically less computationally demanding. Relative to subsampling, our method presents two advantages: (i) it strictly dominates in terms of asymptotic power (for reasonable choices of subsample size), and (ii) it appears to be less sensitive to the choice of its tuning parameter than subsampling is to the choice of subsample size. |
doi_str_mv | 10.3982/QE490 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2290195045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A735386175</galeid><sourcerecordid>A735386175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5667-bf091620cd92a6b66f4c46e2d963ff2c9209dedba12abb5db3236a62f28e0fe53</originalsourceid><addsrcrecordid>eNp9kd9rFDEQxxdRsLT3JwgB34Sr-bHJbh6PUrVQKgULvoVsMtHU3eSaZJX7753zfKgvJg8zfOfznTCZrtswein0yN_fX_eavujO2CD1dhCCvXyWv-42tT5SPGIc1cDOuh83KUCB5ICEXEhdp5_gWi6V2ORJbt-hkLAm12JOleRA9ra0aOf5QKKH1GKI4I-iXaAB2mIiS16wghk8rXaO7YCKh7ledK-CnSts_sbz7uHD9ZerT9vbzx9vrna3WyeVGrZToJopTp3X3KpJqdC7XgH3WokQuNOcag9-sozbaZJ-Elwoq3jgI9AAUpx3b0999yU_rVCbecxrSfik4VxTpiXt_0uxcWRqFFz1SF2eqG92BhNTyK1Yh9fDEl1OECLqu0FIMSr8ZzSQkwGwGqvZl7jYcjCMMtlT2bOviLw7Ib_Qe3hGmOMGzZ8NmvuH3R1TA8Jv_ul3DBUXZHAMiZP_BmqrmFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881683264</pqid></control><display><type>article</type><title>Inference for subvectors and other functions of partially identified parameters in moment inequality models</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley_OA刊</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley-Blackwell Full Collection</source><source>Business Source Complete</source><creator>Bugni, Federico A ; Canay, Ivan A ; Shi, Xiaoxia</creator><creatorcontrib>Bugni, Federico A ; Canay, Ivan A ; Shi, Xiaoxia</creatorcontrib><description>This paper introduces a bootstrap-based inference method for functions of the parameter vector in a moment (in)equality model. These functions are restricted to be linear for two-sided testing problems, but may be nonlinear for one-sided testing problems. In the most common case, this function selects a subvector of the parameter, such as a single component. The new inference method we propose controls asymptotic size uniformly over a large class of data distributions and improves upon the two existing methods that deliver uniform size control for this type of problem: projection-based and subsampling inference. Relative to projection-based procedures, our method presents three advantages: (i) it weakly dominates in terms of finite sample power, (ii) it strictly dominates in terms of asymptotic power, and (iii) it is typically less computationally demanding. Relative to subsampling, our method presents two advantages: (i) it strictly dominates in terms of asymptotic power (for reasonable choices of subsample size), and (ii) it appears to be less sensitive to the choice of its tuning parameter than subsampling is to the choice of subsample size.</description><identifier>ISSN: 1759-7331</identifier><identifier>ISSN: 1759-7323</identifier><identifier>EISSN: 1759-7331</identifier><identifier>DOI: 10.3982/QE490</identifier><language>eng</language><publisher>New Haven, CT: The Econometric Society</publisher><subject>C01 ; C12 ; C15 ; Confidence intervals ; Econometrics ; Equality ; Hypotheses ; hypothesis testing ; Inequality ; Inference ; moment inequalities ; Partial identification ; Power ; subvector inference</subject><ispartof>Quantitative economics, 2017-03, Vol.8 (1), p.1-38</ispartof><rights>Copyright © 2017 The Authors.</rights><rights>COPYRIGHT 2017 John Wiley & Sons, Inc.</rights><rights>2017 The Econometric Society</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5667-bf091620cd92a6b66f4c46e2d963ff2c9209dedba12abb5db3236a62f28e0fe53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.3982%2FQE490$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.3982%2FQE490$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,1411,1427,11541,27901,27902,45550,45551,46027,46384,46451,46808</link.rule.ids></links><search><creatorcontrib>Bugni, Federico A</creatorcontrib><creatorcontrib>Canay, Ivan A</creatorcontrib><creatorcontrib>Shi, Xiaoxia</creatorcontrib><title>Inference for subvectors and other functions of partially identified parameters in moment inequality models</title><title>Quantitative economics</title><description>This paper introduces a bootstrap-based inference method for functions of the parameter vector in a moment (in)equality model. These functions are restricted to be linear for two-sided testing problems, but may be nonlinear for one-sided testing problems. In the most common case, this function selects a subvector of the parameter, such as a single component. The new inference method we propose controls asymptotic size uniformly over a large class of data distributions and improves upon the two existing methods that deliver uniform size control for this type of problem: projection-based and subsampling inference. Relative to projection-based procedures, our method presents three advantages: (i) it weakly dominates in terms of finite sample power, (ii) it strictly dominates in terms of asymptotic power, and (iii) it is typically less computationally demanding. Relative to subsampling, our method presents two advantages: (i) it strictly dominates in terms of asymptotic power (for reasonable choices of subsample size), and (ii) it appears to be less sensitive to the choice of its tuning parameter than subsampling is to the choice of subsample size.</description><subject>C01</subject><subject>C12</subject><subject>C15</subject><subject>Confidence intervals</subject><subject>Econometrics</subject><subject>Equality</subject><subject>Hypotheses</subject><subject>hypothesis testing</subject><subject>Inequality</subject><subject>Inference</subject><subject>moment inequalities</subject><subject>Partial identification</subject><subject>Power</subject><subject>subvector inference</subject><issn>1759-7331</issn><issn>1759-7323</issn><issn>1759-7331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kd9rFDEQxxdRsLT3JwgB34Sr-bHJbh6PUrVQKgULvoVsMtHU3eSaZJX7753zfKgvJg8zfOfznTCZrtswein0yN_fX_eavujO2CD1dhCCvXyWv-42tT5SPGIc1cDOuh83KUCB5ICEXEhdp5_gWi6V2ORJbt-hkLAm12JOleRA9ra0aOf5QKKH1GKI4I-iXaAB2mIiS16wghk8rXaO7YCKh7ledK-CnSts_sbz7uHD9ZerT9vbzx9vrna3WyeVGrZToJopTp3X3KpJqdC7XgH3WokQuNOcag9-sozbaZJ-Elwoq3jgI9AAUpx3b0999yU_rVCbecxrSfik4VxTpiXt_0uxcWRqFFz1SF2eqG92BhNTyK1Yh9fDEl1OECLqu0FIMSr8ZzSQkwGwGqvZl7jYcjCMMtlT2bOviLw7Ib_Qe3hGmOMGzZ8NmvuH3R1TA8Jv_ul3DBUXZHAMiZP_BmqrmFM</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Bugni, Federico A</creator><creator>Canay, Ivan A</creator><creator>Shi, Xiaoxia</creator><general>The Econometric Society</general><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>OT2</scope><scope>24P</scope><scope>OQ6</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>201703</creationdate><title>Inference for subvectors and other functions of partially identified parameters in moment inequality models</title><author>Bugni, Federico A ; Canay, Ivan A ; Shi, Xiaoxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5667-bf091620cd92a6b66f4c46e2d963ff2c9209dedba12abb5db3236a62f28e0fe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>C01</topic><topic>C12</topic><topic>C15</topic><topic>Confidence intervals</topic><topic>Econometrics</topic><topic>Equality</topic><topic>Hypotheses</topic><topic>hypothesis testing</topic><topic>Inequality</topic><topic>Inference</topic><topic>moment inequalities</topic><topic>Partial identification</topic><topic>Power</topic><topic>subvector inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bugni, Federico A</creatorcontrib><creatorcontrib>Canay, Ivan A</creatorcontrib><creatorcontrib>Shi, Xiaoxia</creatorcontrib><collection>EconStor</collection><collection>Wiley_OA刊</collection><collection>ECONIS</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM global</collection><collection>Publicly Available Content Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Quantitative economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bugni, Federico A</au><au>Canay, Ivan A</au><au>Shi, Xiaoxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference for subvectors and other functions of partially identified parameters in moment inequality models</atitle><jtitle>Quantitative economics</jtitle><date>2017-03</date><risdate>2017</risdate><volume>8</volume><issue>1</issue><spage>1</spage><epage>38</epage><pages>1-38</pages><issn>1759-7331</issn><issn>1759-7323</issn><eissn>1759-7331</eissn><abstract>This paper introduces a bootstrap-based inference method for functions of the parameter vector in a moment (in)equality model. These functions are restricted to be linear for two-sided testing problems, but may be nonlinear for one-sided testing problems. In the most common case, this function selects a subvector of the parameter, such as a single component. The new inference method we propose controls asymptotic size uniformly over a large class of data distributions and improves upon the two existing methods that deliver uniform size control for this type of problem: projection-based and subsampling inference. Relative to projection-based procedures, our method presents three advantages: (i) it weakly dominates in terms of finite sample power, (ii) it strictly dominates in terms of asymptotic power, and (iii) it is typically less computationally demanding. Relative to subsampling, our method presents two advantages: (i) it strictly dominates in terms of asymptotic power (for reasonable choices of subsample size), and (ii) it appears to be less sensitive to the choice of its tuning parameter than subsampling is to the choice of subsample size.</abstract><cop>New Haven, CT</cop><pub>The Econometric Society</pub><doi>10.3982/QE490</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1759-7331 |
ispartof | Quantitative economics, 2017-03, Vol.8 (1), p.1-38 |
issn | 1759-7331 1759-7323 1759-7331 |
language | eng |
recordid | cdi_proquest_journals_2290195045 |
source | DOAJ Directory of Open Access Journals; Wiley_OA刊; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; Wiley-Blackwell Full Collection; Business Source Complete |
subjects | C01 C12 C15 Confidence intervals Econometrics Equality Hypotheses hypothesis testing Inequality Inference moment inequalities Partial identification Power subvector inference |
title | Inference for subvectors and other functions of partially identified parameters in moment inequality models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20for%20subvectors%20and%20other%20functions%20of%20partially%20identified%20parameters%20in%20moment%20inequality%20models&rft.jtitle=Quantitative%20economics&rft.au=Bugni,%20Federico%20A&rft.date=2017-03&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=38&rft.pages=1-38&rft.issn=1759-7331&rft.eissn=1759-7331&rft_id=info:doi/10.3982/QE490&rft_dat=%3Cgale_proqu%3EA735386175%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1881683264&rft_id=info:pmid/&rft_galeid=A735386175&rfr_iscdi=true |