3D-printed interdigitated graphene framework as superior support of metal oxide nanostructures for remarkable micro-pseudocapacitors

Micro-sized electrochemical energy storage device is a prospective candidate to power the miniaturized electronic devices and micro-pseudocapacitor (MPC) is a typical one with high power density and long life span. Developing a versatile architectural design with high capacity delivering in a microm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2019-10, Vol.319, p.245-252
Hauptverfasser: Wang, Teng, Li, Liang, Tian, Xiaocong, Jin, Hongyun, Tang, Kang, Hou, Shuen, Zhou, Han, Yu, Xianghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue
container_start_page 245
container_title Electrochimica acta
container_volume 319
creator Wang, Teng
Li, Liang
Tian, Xiaocong
Jin, Hongyun
Tang, Kang
Hou, Shuen
Zhou, Han
Yu, Xianghua
description Micro-sized electrochemical energy storage device is a prospective candidate to power the miniaturized electronic devices and micro-pseudocapacitor (MPC) is a typical one with high power density and long life span. Developing a versatile architectural design with high capacity delivering in a micrometer range is paramount for remarkable MPC constructions. Here, an interdigitated graphene framework (IGF) is developed using a facile 3D printing technique to enable the customized geometries as well as the superior support of metal oxide nanostructures. With this unique design, the IGF-supported NiO nanorod heterostructured microelectrodes deliver high specific capacity of 220.2 C g−1 (400.3 F g−1). When directly assembled to quasi-solid-state symmetric MPCs, the NiO filled one exhibits a remarkable device capacity of 197.5 mC cm−2. Robust MPC cycling stabilities are also demonstrated during 10000 charge and discharge cycles. In addition to the NiO based ones, MnO2 nanosheet filled MPCs are also fabricated, where a high device capacity and a good cycling stability are also exhibited. We expect that this novel 3D-printed IGF can pave the way for constructing state-of-the-art miniaturized electrochemical energy storage devices with customized geometries. [Display omitted]
doi_str_mv 10.1016/j.electacta.2019.06.163
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2290114737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468619313064</els_id><sourcerecordid>2290114737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-d217b86f3e55de77f52622a671dbc4b673a1c413fca75a0a0a6a7d103eb83d33</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhq2qSGyB31BLPSfYcWJnjwhKi4TEhbs1sSfUy26cjh1a7vzwOtqKK7LlGUvvOx8PY1-lqKWQ-nJX4x5dhnLrRshtLXQttfrENrI3qlJ9t_3MNkJIVbW616fsS0o7IYTRRmzYm7qpZgpTRs_Xl3x4ChnW7xPB_Asn5CPBAf9EeuaQeFpmpBBpTeZImceRHzDDnse_wSOfYIop0-LyQpj4WJSEB6BnGPbID8FRrOaEi48OZnAhR0rn7GSEfcKL__GMPd5-f7z-Wd0__Li7vrqvXCt0rnwjzdDrUWHXeTRm7BrdNKCN9INrB20USNdKNTowHYhyNBgvhcKhV16pM_btWHam-HvBlO0uLjSVjrZptkLK1ihTVOaoKpOmRDjawqcs8GqlsCtxu7PvxO1K3AptC_HivDo6sezwEpBscgEnhz5Q0Vsfw4c1_gFPkJJS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290114737</pqid></control><display><type>article</type><title>3D-printed interdigitated graphene framework as superior support of metal oxide nanostructures for remarkable micro-pseudocapacitors</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Teng ; Li, Liang ; Tian, Xiaocong ; Jin, Hongyun ; Tang, Kang ; Hou, Shuen ; Zhou, Han ; Yu, Xianghua</creator><creatorcontrib>Wang, Teng ; Li, Liang ; Tian, Xiaocong ; Jin, Hongyun ; Tang, Kang ; Hou, Shuen ; Zhou, Han ; Yu, Xianghua</creatorcontrib><description>Micro-sized electrochemical energy storage device is a prospective candidate to power the miniaturized electronic devices and micro-pseudocapacitor (MPC) is a typical one with high power density and long life span. Developing a versatile architectural design with high capacity delivering in a micrometer range is paramount for remarkable MPC constructions. Here, an interdigitated graphene framework (IGF) is developed using a facile 3D printing technique to enable the customized geometries as well as the superior support of metal oxide nanostructures. With this unique design, the IGF-supported NiO nanorod heterostructured microelectrodes deliver high specific capacity of 220.2 C g−1 (400.3 F g−1). When directly assembled to quasi-solid-state symmetric MPCs, the NiO filled one exhibits a remarkable device capacity of 197.5 mC cm−2. Robust MPC cycling stabilities are also demonstrated during 10000 charge and discharge cycles. In addition to the NiO based ones, MnO2 nanosheet filled MPCs are also fabricated, where a high device capacity and a good cycling stability are also exhibited. We expect that this novel 3D-printed IGF can pave the way for constructing state-of-the-art miniaturized electrochemical energy storage devices with customized geometries. [Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2019.06.163</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>3D printing ; Cycles ; Electrochemistry ; Electronic devices ; Energy storage ; Graphene ; Manganese dioxide ; Metal oxide ; Metal oxides ; Micro-pseudocapacitor ; Microelectrodes ; Nanorods ; Nanostructure ; Nickel oxides ; Three dimensional printing</subject><ispartof>Electrochimica acta, 2019-10, Vol.319, p.245-252</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-d217b86f3e55de77f52622a671dbc4b673a1c413fca75a0a0a6a7d103eb83d33</citedby><cites>FETCH-LOGICAL-c406t-d217b86f3e55de77f52622a671dbc4b673a1c413fca75a0a0a6a7d103eb83d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2019.06.163$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Teng</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Tian, Xiaocong</creatorcontrib><creatorcontrib>Jin, Hongyun</creatorcontrib><creatorcontrib>Tang, Kang</creatorcontrib><creatorcontrib>Hou, Shuen</creatorcontrib><creatorcontrib>Zhou, Han</creatorcontrib><creatorcontrib>Yu, Xianghua</creatorcontrib><title>3D-printed interdigitated graphene framework as superior support of metal oxide nanostructures for remarkable micro-pseudocapacitors</title><title>Electrochimica acta</title><description>Micro-sized electrochemical energy storage device is a prospective candidate to power the miniaturized electronic devices and micro-pseudocapacitor (MPC) is a typical one with high power density and long life span. Developing a versatile architectural design with high capacity delivering in a micrometer range is paramount for remarkable MPC constructions. Here, an interdigitated graphene framework (IGF) is developed using a facile 3D printing technique to enable the customized geometries as well as the superior support of metal oxide nanostructures. With this unique design, the IGF-supported NiO nanorod heterostructured microelectrodes deliver high specific capacity of 220.2 C g−1 (400.3 F g−1). When directly assembled to quasi-solid-state symmetric MPCs, the NiO filled one exhibits a remarkable device capacity of 197.5 mC cm−2. Robust MPC cycling stabilities are also demonstrated during 10000 charge and discharge cycles. In addition to the NiO based ones, MnO2 nanosheet filled MPCs are also fabricated, where a high device capacity and a good cycling stability are also exhibited. We expect that this novel 3D-printed IGF can pave the way for constructing state-of-the-art miniaturized electrochemical energy storage devices with customized geometries. [Display omitted]</description><subject>3D printing</subject><subject>Cycles</subject><subject>Electrochemistry</subject><subject>Electronic devices</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Manganese dioxide</subject><subject>Metal oxide</subject><subject>Metal oxides</subject><subject>Micro-pseudocapacitor</subject><subject>Microelectrodes</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Nickel oxides</subject><subject>Three dimensional printing</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhq2qSGyB31BLPSfYcWJnjwhKi4TEhbs1sSfUy26cjh1a7vzwOtqKK7LlGUvvOx8PY1-lqKWQ-nJX4x5dhnLrRshtLXQttfrENrI3qlJ9t_3MNkJIVbW616fsS0o7IYTRRmzYm7qpZgpTRs_Xl3x4ChnW7xPB_Asn5CPBAf9EeuaQeFpmpBBpTeZImceRHzDDnse_wSOfYIop0-LyQpj4WJSEB6BnGPbID8FRrOaEi48OZnAhR0rn7GSEfcKL__GMPd5-f7z-Wd0__Li7vrqvXCt0rnwjzdDrUWHXeTRm7BrdNKCN9INrB20USNdKNTowHYhyNBgvhcKhV16pM_btWHam-HvBlO0uLjSVjrZptkLK1ihTVOaoKpOmRDjawqcs8GqlsCtxu7PvxO1K3AptC_HivDo6sezwEpBscgEnhz5Q0Vsfw4c1_gFPkJJS</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Wang, Teng</creator><creator>Li, Liang</creator><creator>Tian, Xiaocong</creator><creator>Jin, Hongyun</creator><creator>Tang, Kang</creator><creator>Hou, Shuen</creator><creator>Zhou, Han</creator><creator>Yu, Xianghua</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20191001</creationdate><title>3D-printed interdigitated graphene framework as superior support of metal oxide nanostructures for remarkable micro-pseudocapacitors</title><author>Wang, Teng ; Li, Liang ; Tian, Xiaocong ; Jin, Hongyun ; Tang, Kang ; Hou, Shuen ; Zhou, Han ; Yu, Xianghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-d217b86f3e55de77f52622a671dbc4b673a1c413fca75a0a0a6a7d103eb83d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D printing</topic><topic>Cycles</topic><topic>Electrochemistry</topic><topic>Electronic devices</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Manganese dioxide</topic><topic>Metal oxide</topic><topic>Metal oxides</topic><topic>Micro-pseudocapacitor</topic><topic>Microelectrodes</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Nickel oxides</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Teng</creatorcontrib><creatorcontrib>Li, Liang</creatorcontrib><creatorcontrib>Tian, Xiaocong</creatorcontrib><creatorcontrib>Jin, Hongyun</creatorcontrib><creatorcontrib>Tang, Kang</creatorcontrib><creatorcontrib>Hou, Shuen</creatorcontrib><creatorcontrib>Zhou, Han</creatorcontrib><creatorcontrib>Yu, Xianghua</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Teng</au><au>Li, Liang</au><au>Tian, Xiaocong</au><au>Jin, Hongyun</au><au>Tang, Kang</au><au>Hou, Shuen</au><au>Zhou, Han</au><au>Yu, Xianghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-printed interdigitated graphene framework as superior support of metal oxide nanostructures for remarkable micro-pseudocapacitors</atitle><jtitle>Electrochimica acta</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>319</volume><spage>245</spage><epage>252</epage><pages>245-252</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Micro-sized electrochemical energy storage device is a prospective candidate to power the miniaturized electronic devices and micro-pseudocapacitor (MPC) is a typical one with high power density and long life span. Developing a versatile architectural design with high capacity delivering in a micrometer range is paramount for remarkable MPC constructions. Here, an interdigitated graphene framework (IGF) is developed using a facile 3D printing technique to enable the customized geometries as well as the superior support of metal oxide nanostructures. With this unique design, the IGF-supported NiO nanorod heterostructured microelectrodes deliver high specific capacity of 220.2 C g−1 (400.3 F g−1). When directly assembled to quasi-solid-state symmetric MPCs, the NiO filled one exhibits a remarkable device capacity of 197.5 mC cm−2. Robust MPC cycling stabilities are also demonstrated during 10000 charge and discharge cycles. In addition to the NiO based ones, MnO2 nanosheet filled MPCs are also fabricated, where a high device capacity and a good cycling stability are also exhibited. We expect that this novel 3D-printed IGF can pave the way for constructing state-of-the-art miniaturized electrochemical energy storage devices with customized geometries. [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2019.06.163</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2019-10, Vol.319, p.245-252
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2290114737
source Access via ScienceDirect (Elsevier)
subjects 3D printing
Cycles
Electrochemistry
Electronic devices
Energy storage
Graphene
Manganese dioxide
Metal oxide
Metal oxides
Micro-pseudocapacitor
Microelectrodes
Nanorods
Nanostructure
Nickel oxides
Three dimensional printing
title 3D-printed interdigitated graphene framework as superior support of metal oxide nanostructures for remarkable micro-pseudocapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-printed%20interdigitated%20graphene%20framework%20as%20superior%20support%20of%20metal%20oxide%20nanostructures%20for%20remarkable%20micro-pseudocapacitors&rft.jtitle=Electrochimica%20acta&rft.au=Wang,%20Teng&rft.date=2019-10-01&rft.volume=319&rft.spage=245&rft.epage=252&rft.pages=245-252&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2019.06.163&rft_dat=%3Cproquest_cross%3E2290114737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2290114737&rft_id=info:pmid/&rft_els_id=S0013468619313064&rfr_iscdi=true