Modifying lewis base on TiO2 nanosheets for enhancing CO2 adsorption and the separation of photogenerated charge carriers
[Display omitted] •TiO2/[WO4]2− composites were prepared via in-situ ion exchange strategy for the first time.•[WO4]2− as a lewis base was used to improve the CO2 adsorption.•[WO4]2− as a lewis base was used to promote the carriers’ separation.•TiO2/[WO4]2− significantly improved the CO yield compar...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2019-11, Vol.256, p.117881, Article 117881 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 117881 |
container_title | Applied catalysis. B, Environmental |
container_volume | 256 |
creator | Jiang, Zaiyong Miao, Wenkang Zhu, Xianglin Yang, Guihua Yuan, Zhimin Chen, Jiachuan Ji, Xingxiang Kong, Fangong Huang, Baibiao |
description | [Display omitted]
•TiO2/[WO4]2− composites were prepared via in-situ ion exchange strategy for the first time.•[WO4]2− as a lewis base was used to improve the CO2 adsorption.•[WO4]2− as a lewis base was used to promote the carriers’ separation.•TiO2/[WO4]2− significantly improved the CO yield compared to that of pristine TiO2.
TiO2 is one of the most studied in photocatalytic CO2 filed, while its efficiency was seriously limited by the weak adsorption ability for CO2 and low separation efficiency of charge carriers. Here a lewis base [WO4]2− was used to modify TiO2 via an in-situ ion exchange strategy. It was found that the prepared samples showed better performance in CO2 adsorption and carriers’ separation. As a result, the TiO2/[WO4]2− composites had exhibited good activities in photocatalytic CO2 reduction. The amount of generated CO was over 19 times that of the pure TiO2 and it was even much better than precious metal (Ag, Au) modified TiO2. Our experiment proves that this kind of modifying Lewis base method is an efficient strategy for enhancing the CO2 reduction activity of semiconductor photocatalysts. |
doi_str_mv | 10.1016/j.apcatb.2019.117881 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2290112721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337319306277</els_id><sourcerecordid>2290112721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-3e5045a7ebf7f2bcd29b2882afd4281ce5b01143a601c1753bbe7d810b2c30623</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB__wEXA9Yx5TJt0I0jxBZVu6jrkcaeTUpMxmSr996aOa1cXzj3nXs6H0A0lNSV0dretdW_1YGpG6LymVEhJT9CESsErLiU_RRMyZ7OKc8HP0UXOW0II40xO0OEtOt8efNjgHXz7jI3OgGPAa79iOOgQcwcwZNzGhCF0Otijd1GW2uWY-sEXsw4ODx3gDL1O-leKLe67OMQNBCgSOGw7nTaArU7JQ8pX6KzVuwzXf_MSvT89rhcv1XL1_Lp4WFa24WKoOExJM9UCTCtaZqxjc8OkZLp1DZPUwtQQShuuZ4RaKqbcGBBOUmKY5WTG-CW6He_2KX7uIQ9qG_cplJeKsXnJMsFocTWjy6aYc4JW9cl_6HRQlKgjZLVVI2R1hKxGyCV2P8agNPgqtVS2HoIF5xPYQbno_z_wA2vXiBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290112721</pqid></control><display><type>article</type><title>Modifying lewis base on TiO2 nanosheets for enhancing CO2 adsorption and the separation of photogenerated charge carriers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jiang, Zaiyong ; Miao, Wenkang ; Zhu, Xianglin ; Yang, Guihua ; Yuan, Zhimin ; Chen, Jiachuan ; Ji, Xingxiang ; Kong, Fangong ; Huang, Baibiao</creator><creatorcontrib>Jiang, Zaiyong ; Miao, Wenkang ; Zhu, Xianglin ; Yang, Guihua ; Yuan, Zhimin ; Chen, Jiachuan ; Ji, Xingxiang ; Kong, Fangong ; Huang, Baibiao</creatorcontrib><description>[Display omitted]
•TiO2/[WO4]2− composites were prepared via in-situ ion exchange strategy for the first time.•[WO4]2− as a lewis base was used to improve the CO2 adsorption.•[WO4]2− as a lewis base was used to promote the carriers’ separation.•TiO2/[WO4]2− significantly improved the CO yield compared to that of pristine TiO2.
TiO2 is one of the most studied in photocatalytic CO2 filed, while its efficiency was seriously limited by the weak adsorption ability for CO2 and low separation efficiency of charge carriers. Here a lewis base [WO4]2− was used to modify TiO2 via an in-situ ion exchange strategy. It was found that the prepared samples showed better performance in CO2 adsorption and carriers’ separation. As a result, the TiO2/[WO4]2− composites had exhibited good activities in photocatalytic CO2 reduction. The amount of generated CO was over 19 times that of the pure TiO2 and it was even much better than precious metal (Ag, Au) modified TiO2. Our experiment proves that this kind of modifying Lewis base method is an efficient strategy for enhancing the CO2 reduction activity of semiconductor photocatalysts.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2019.117881</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>[WO4]2 ; Adsorption ; Carbon dioxide ; Charge efficiency ; CO2 adsorption ; Current carriers ; Gold ; Ion exchange ; Lewis base ; Nanosheets ; Photocatalysis ; Photocatalytic CO2 reduction ; Reduction ; Separation ; Silver ; TiO2 ; Titanium dioxide</subject><ispartof>Applied catalysis. B, Environmental, 2019-11, Vol.256, p.117881, Article 117881</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 5, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-3e5045a7ebf7f2bcd29b2882afd4281ce5b01143a601c1753bbe7d810b2c30623</citedby><cites>FETCH-LOGICAL-c437t-3e5045a7ebf7f2bcd29b2882afd4281ce5b01143a601c1753bbe7d810b2c30623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcatb.2019.117881$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jiang, Zaiyong</creatorcontrib><creatorcontrib>Miao, Wenkang</creatorcontrib><creatorcontrib>Zhu, Xianglin</creatorcontrib><creatorcontrib>Yang, Guihua</creatorcontrib><creatorcontrib>Yuan, Zhimin</creatorcontrib><creatorcontrib>Chen, Jiachuan</creatorcontrib><creatorcontrib>Ji, Xingxiang</creatorcontrib><creatorcontrib>Kong, Fangong</creatorcontrib><creatorcontrib>Huang, Baibiao</creatorcontrib><title>Modifying lewis base on TiO2 nanosheets for enhancing CO2 adsorption and the separation of photogenerated charge carriers</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted]
•TiO2/[WO4]2− composites were prepared via in-situ ion exchange strategy for the first time.•[WO4]2− as a lewis base was used to improve the CO2 adsorption.•[WO4]2− as a lewis base was used to promote the carriers’ separation.•TiO2/[WO4]2− significantly improved the CO yield compared to that of pristine TiO2.
TiO2 is one of the most studied in photocatalytic CO2 filed, while its efficiency was seriously limited by the weak adsorption ability for CO2 and low separation efficiency of charge carriers. Here a lewis base [WO4]2− was used to modify TiO2 via an in-situ ion exchange strategy. It was found that the prepared samples showed better performance in CO2 adsorption and carriers’ separation. As a result, the TiO2/[WO4]2− composites had exhibited good activities in photocatalytic CO2 reduction. The amount of generated CO was over 19 times that of the pure TiO2 and it was even much better than precious metal (Ag, Au) modified TiO2. Our experiment proves that this kind of modifying Lewis base method is an efficient strategy for enhancing the CO2 reduction activity of semiconductor photocatalysts.</description><subject>[WO4]2</subject><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Charge efficiency</subject><subject>CO2 adsorption</subject><subject>Current carriers</subject><subject>Gold</subject><subject>Ion exchange</subject><subject>Lewis base</subject><subject>Nanosheets</subject><subject>Photocatalysis</subject><subject>Photocatalytic CO2 reduction</subject><subject>Reduction</subject><subject>Separation</subject><subject>Silver</subject><subject>TiO2</subject><subject>Titanium dioxide</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWB__wEXA9Yx5TJt0I0jxBZVu6jrkcaeTUpMxmSr996aOa1cXzj3nXs6H0A0lNSV0dretdW_1YGpG6LymVEhJT9CESsErLiU_RRMyZ7OKc8HP0UXOW0II40xO0OEtOt8efNjgHXz7jI3OgGPAa79iOOgQcwcwZNzGhCF0Otijd1GW2uWY-sEXsw4ODx3gDL1O-leKLe67OMQNBCgSOGw7nTaArU7JQ8pX6KzVuwzXf_MSvT89rhcv1XL1_Lp4WFa24WKoOExJM9UCTCtaZqxjc8OkZLp1DZPUwtQQShuuZ4RaKqbcGBBOUmKY5WTG-CW6He_2KX7uIQ9qG_cplJeKsXnJMsFocTWjy6aYc4JW9cl_6HRQlKgjZLVVI2R1hKxGyCV2P8agNPgqtVS2HoIF5xPYQbno_z_wA2vXiBQ</recordid><startdate>20191105</startdate><enddate>20191105</enddate><creator>Jiang, Zaiyong</creator><creator>Miao, Wenkang</creator><creator>Zhu, Xianglin</creator><creator>Yang, Guihua</creator><creator>Yuan, Zhimin</creator><creator>Chen, Jiachuan</creator><creator>Ji, Xingxiang</creator><creator>Kong, Fangong</creator><creator>Huang, Baibiao</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20191105</creationdate><title>Modifying lewis base on TiO2 nanosheets for enhancing CO2 adsorption and the separation of photogenerated charge carriers</title><author>Jiang, Zaiyong ; Miao, Wenkang ; Zhu, Xianglin ; Yang, Guihua ; Yuan, Zhimin ; Chen, Jiachuan ; Ji, Xingxiang ; Kong, Fangong ; Huang, Baibiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-3e5045a7ebf7f2bcd29b2882afd4281ce5b01143a601c1753bbe7d810b2c30623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>[WO4]2</topic><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Charge efficiency</topic><topic>CO2 adsorption</topic><topic>Current carriers</topic><topic>Gold</topic><topic>Ion exchange</topic><topic>Lewis base</topic><topic>Nanosheets</topic><topic>Photocatalysis</topic><topic>Photocatalytic CO2 reduction</topic><topic>Reduction</topic><topic>Separation</topic><topic>Silver</topic><topic>TiO2</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Zaiyong</creatorcontrib><creatorcontrib>Miao, Wenkang</creatorcontrib><creatorcontrib>Zhu, Xianglin</creatorcontrib><creatorcontrib>Yang, Guihua</creatorcontrib><creatorcontrib>Yuan, Zhimin</creatorcontrib><creatorcontrib>Chen, Jiachuan</creatorcontrib><creatorcontrib>Ji, Xingxiang</creatorcontrib><creatorcontrib>Kong, Fangong</creatorcontrib><creatorcontrib>Huang, Baibiao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Zaiyong</au><au>Miao, Wenkang</au><au>Zhu, Xianglin</au><au>Yang, Guihua</au><au>Yuan, Zhimin</au><au>Chen, Jiachuan</au><au>Ji, Xingxiang</au><au>Kong, Fangong</au><au>Huang, Baibiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modifying lewis base on TiO2 nanosheets for enhancing CO2 adsorption and the separation of photogenerated charge carriers</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2019-11-05</date><risdate>2019</risdate><volume>256</volume><spage>117881</spage><pages>117881-</pages><artnum>117881</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted]
•TiO2/[WO4]2− composites were prepared via in-situ ion exchange strategy for the first time.•[WO4]2− as a lewis base was used to improve the CO2 adsorption.•[WO4]2− as a lewis base was used to promote the carriers’ separation.•TiO2/[WO4]2− significantly improved the CO yield compared to that of pristine TiO2.
TiO2 is one of the most studied in photocatalytic CO2 filed, while its efficiency was seriously limited by the weak adsorption ability for CO2 and low separation efficiency of charge carriers. Here a lewis base [WO4]2− was used to modify TiO2 via an in-situ ion exchange strategy. It was found that the prepared samples showed better performance in CO2 adsorption and carriers’ separation. As a result, the TiO2/[WO4]2− composites had exhibited good activities in photocatalytic CO2 reduction. The amount of generated CO was over 19 times that of the pure TiO2 and it was even much better than precious metal (Ag, Au) modified TiO2. Our experiment proves that this kind of modifying Lewis base method is an efficient strategy for enhancing the CO2 reduction activity of semiconductor photocatalysts.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2019.117881</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-3373 |
ispartof | Applied catalysis. B, Environmental, 2019-11, Vol.256, p.117881, Article 117881 |
issn | 0926-3373 1873-3883 |
language | eng |
recordid | cdi_proquest_journals_2290112721 |
source | Access via ScienceDirect (Elsevier) |
subjects | [WO4]2 Adsorption Carbon dioxide Charge efficiency CO2 adsorption Current carriers Gold Ion exchange Lewis base Nanosheets Photocatalysis Photocatalytic CO2 reduction Reduction Separation Silver TiO2 Titanium dioxide |
title | Modifying lewis base on TiO2 nanosheets for enhancing CO2 adsorption and the separation of photogenerated charge carriers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modifying%20lewis%20base%20on%20TiO2%20nanosheets%20for%20enhancing%20CO2%20adsorption%20and%20the%20separation%20of%20photogenerated%20charge%20carriers&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Jiang,%20Zaiyong&rft.date=2019-11-05&rft.volume=256&rft.spage=117881&rft.pages=117881-&rft.artnum=117881&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2019.117881&rft_dat=%3Cproquest_cross%3E2290112721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2290112721&rft_id=info:pmid/&rft_els_id=S0926337319306277&rfr_iscdi=true |