Commissioning of a mobile electron accelerator for intraoperative radiotherapy

Radiation performance characteristics of a dedicated intraoperative accelerator were determined to prepare the unit for clinical use. The linear accelerator uses standing wave X-band technology (wavelength approximately 3 centimeters) in order to minimize the mass of the accelerator. The injector de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied clinical medical physics 2001, Vol.2 (3), p.121-130
Hauptverfasser: Mills, M D, Fajardo, L C, Wilson, D L, Daves, J L, Spanos, W J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue 3
container_start_page 121
container_title Journal of applied clinical medical physics
container_volume 2
creator Mills, M D
Fajardo, L C
Wilson, D L
Daves, J L
Spanos, W J
description Radiation performance characteristics of a dedicated intraoperative accelerator were determined to prepare the unit for clinical use. The linear accelerator uses standing wave X-band technology (wavelength approximately 3 centimeters) in order to minimize the mass of the accelerator. The injector design, smaller accelerator components, and low electron beam currents minimize radiation leakage. The unit may be used in a standard operating room without additional shielding. The mass of the accelerator gantry is 1250 Kg (weight approximately 2750 lbs) and the unit is transportable between operating rooms. Nominal electron energies are 4, 6, 9, and 12 MeV, and operate at selectable dose rates of 2.5 or 10 Gray per minute. D(max) depths in water for a 10 cm applicator are 0.7, 1.3, 1.7, and 2.0 for these energies, respectively. The depths of 80% dose are 1.2, 2.1, 3.1, and 3.9 cm, respectively. Absolute calibration using the American Association of Physicists in Medicine TG-51 protocol was performed for all electron energies using the 10 cm applicator. Applicator sizes ranged from 3 to 10 cm diameter for flat applicators, and 3 to 6 cm diameter for 30 degrees beveled applicators. Output factors were determined for all energies relative to the 10 cm flat applicator. Central axis depth dose profiles and isodose plots were determined for every applicator and energy combination. A quality assurance protocol, performed each day before patient treatment, was developed for output and energy constancy.
doi_str_mv 10.1120/1.1385128
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2289632670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289632670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-3b97b6a02f13db87a72bcb094c0924ffaec654cef396b7a2ac4f4dba431b575f3</originalsourceid><addsrcrecordid>eNpNkE9LxDAQxYMo7rp68AtIwJOHrpkkTZujLP6DRS96DkmaaJZtU5OusN_eyhb0MMyb4cd78BC6BLIEoOQWlsDqEmh9hOZQUlFICfz4n56hs5w3hADUrD5FMwBBKCH1HL2sYtuGnEPsQveBo8cat9GErcNu6-yQYoe1taNOeogJ-3FCNyQd-99P-HY46SbE4XM8-_05OvF6m93FtBfo_eH-bfVUrF8fn1d368JSyoeCGVkZoQn1wBpTV7qixhoiuSWScu-1s6Lk1nkmhak01ZZ73hjNGZiyKj1boOuDb5_i187lQW3iLnVjpKK0loJRUZGRujlQNsWck_OqT6HVaa-AqN_mFKipuZG9mhx3pnXNHzlVxX4AMx9pFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289632670</pqid></control><display><type>article</type><title>Commissioning of a mobile electron accelerator for intraoperative radiotherapy</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Mills, M D ; Fajardo, L C ; Wilson, D L ; Daves, J L ; Spanos, W J</creator><creatorcontrib>Mills, M D ; Fajardo, L C ; Wilson, D L ; Daves, J L ; Spanos, W J</creatorcontrib><description>Radiation performance characteristics of a dedicated intraoperative accelerator were determined to prepare the unit for clinical use. The linear accelerator uses standing wave X-band technology (wavelength approximately 3 centimeters) in order to minimize the mass of the accelerator. The injector design, smaller accelerator components, and low electron beam currents minimize radiation leakage. The unit may be used in a standard operating room without additional shielding. The mass of the accelerator gantry is 1250 Kg (weight approximately 2750 lbs) and the unit is transportable between operating rooms. Nominal electron energies are 4, 6, 9, and 12 MeV, and operate at selectable dose rates of 2.5 or 10 Gray per minute. D(max) depths in water for a 10 cm applicator are 0.7, 1.3, 1.7, and 2.0 for these energies, respectively. The depths of 80% dose are 1.2, 2.1, 3.1, and 3.9 cm, respectively. Absolute calibration using the American Association of Physicists in Medicine TG-51 protocol was performed for all electron energies using the 10 cm applicator. Applicator sizes ranged from 3 to 10 cm diameter for flat applicators, and 3 to 6 cm diameter for 30 degrees beveled applicators. Output factors were determined for all energies relative to the 10 cm flat applicator. Central axis depth dose profiles and isodose plots were determined for every applicator and energy combination. A quality assurance protocol, performed each day before patient treatment, was developed for output and energy constancy.</description><identifier>ISSN: 1526-9914</identifier><identifier>EISSN: 1526-9914</identifier><identifier>DOI: 10.1120/1.1385128</identifier><identifier>PMID: 11602008</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Calibration ; Design ; Dosimetry ; Electrons ; Energy ; Film Dosimetry ; Humans ; Intraoperative Period ; Neoplasms - radiotherapy ; Neoplasms - surgery ; Particle Accelerators ; Patients ; Phantoms, Imaging ; Radiation therapy ; Radiotherapy Dosage ; Radiotherapy, Adjuvant - instrumentation ; Radiotherapy, High-Energy - instrumentation ; Workloads</subject><ispartof>Journal of applied clinical medical physics, 2001, Vol.2 (3), p.121-130</ispartof><rights>2001. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c224t-3b97b6a02f13db87a72bcb094c0924ffaec654cef396b7a2ac4f4dba431b575f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11602008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mills, M D</creatorcontrib><creatorcontrib>Fajardo, L C</creatorcontrib><creatorcontrib>Wilson, D L</creatorcontrib><creatorcontrib>Daves, J L</creatorcontrib><creatorcontrib>Spanos, W J</creatorcontrib><title>Commissioning of a mobile electron accelerator for intraoperative radiotherapy</title><title>Journal of applied clinical medical physics</title><addtitle>J Appl Clin Med Phys</addtitle><description>Radiation performance characteristics of a dedicated intraoperative accelerator were determined to prepare the unit for clinical use. The linear accelerator uses standing wave X-band technology (wavelength approximately 3 centimeters) in order to minimize the mass of the accelerator. The injector design, smaller accelerator components, and low electron beam currents minimize radiation leakage. The unit may be used in a standard operating room without additional shielding. The mass of the accelerator gantry is 1250 Kg (weight approximately 2750 lbs) and the unit is transportable between operating rooms. Nominal electron energies are 4, 6, 9, and 12 MeV, and operate at selectable dose rates of 2.5 or 10 Gray per minute. D(max) depths in water for a 10 cm applicator are 0.7, 1.3, 1.7, and 2.0 for these energies, respectively. The depths of 80% dose are 1.2, 2.1, 3.1, and 3.9 cm, respectively. Absolute calibration using the American Association of Physicists in Medicine TG-51 protocol was performed for all electron energies using the 10 cm applicator. Applicator sizes ranged from 3 to 10 cm diameter for flat applicators, and 3 to 6 cm diameter for 30 degrees beveled applicators. Output factors were determined for all energies relative to the 10 cm flat applicator. Central axis depth dose profiles and isodose plots were determined for every applicator and energy combination. A quality assurance protocol, performed each day before patient treatment, was developed for output and energy constancy.</description><subject>Calibration</subject><subject>Design</subject><subject>Dosimetry</subject><subject>Electrons</subject><subject>Energy</subject><subject>Film Dosimetry</subject><subject>Humans</subject><subject>Intraoperative Period</subject><subject>Neoplasms - radiotherapy</subject><subject>Neoplasms - surgery</subject><subject>Particle Accelerators</subject><subject>Patients</subject><subject>Phantoms, Imaging</subject><subject>Radiation therapy</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy, Adjuvant - instrumentation</subject><subject>Radiotherapy, High-Energy - instrumentation</subject><subject>Workloads</subject><issn>1526-9914</issn><issn>1526-9914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpNkE9LxDAQxYMo7rp68AtIwJOHrpkkTZujLP6DRS96DkmaaJZtU5OusN_eyhb0MMyb4cd78BC6BLIEoOQWlsDqEmh9hOZQUlFICfz4n56hs5w3hADUrD5FMwBBKCH1HL2sYtuGnEPsQveBo8cat9GErcNu6-yQYoe1taNOeogJ-3FCNyQd-99P-HY46SbE4XM8-_05OvF6m93FtBfo_eH-bfVUrF8fn1d368JSyoeCGVkZoQn1wBpTV7qixhoiuSWScu-1s6Lk1nkmhak01ZZ73hjNGZiyKj1boOuDb5_i187lQW3iLnVjpKK0loJRUZGRujlQNsWck_OqT6HVaa-AqN_mFKipuZG9mhx3pnXNHzlVxX4AMx9pFg</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Mills, M D</creator><creator>Fajardo, L C</creator><creator>Wilson, D L</creator><creator>Daves, J L</creator><creator>Spanos, W J</creator><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2001</creationdate><title>Commissioning of a mobile electron accelerator for intraoperative radiotherapy</title><author>Mills, M D ; Fajardo, L C ; Wilson, D L ; Daves, J L ; Spanos, W J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-3b97b6a02f13db87a72bcb094c0924ffaec654cef396b7a2ac4f4dba431b575f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Calibration</topic><topic>Design</topic><topic>Dosimetry</topic><topic>Electrons</topic><topic>Energy</topic><topic>Film Dosimetry</topic><topic>Humans</topic><topic>Intraoperative Period</topic><topic>Neoplasms - radiotherapy</topic><topic>Neoplasms - surgery</topic><topic>Particle Accelerators</topic><topic>Patients</topic><topic>Phantoms, Imaging</topic><topic>Radiation therapy</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy, Adjuvant - instrumentation</topic><topic>Radiotherapy, High-Energy - instrumentation</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mills, M D</creatorcontrib><creatorcontrib>Fajardo, L C</creatorcontrib><creatorcontrib>Wilson, D L</creatorcontrib><creatorcontrib>Daves, J L</creatorcontrib><creatorcontrib>Spanos, W J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied clinical medical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mills, M D</au><au>Fajardo, L C</au><au>Wilson, D L</au><au>Daves, J L</au><au>Spanos, W J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commissioning of a mobile electron accelerator for intraoperative radiotherapy</atitle><jtitle>Journal of applied clinical medical physics</jtitle><addtitle>J Appl Clin Med Phys</addtitle><date>2001</date><risdate>2001</risdate><volume>2</volume><issue>3</issue><spage>121</spage><epage>130</epage><pages>121-130</pages><issn>1526-9914</issn><eissn>1526-9914</eissn><abstract>Radiation performance characteristics of a dedicated intraoperative accelerator were determined to prepare the unit for clinical use. The linear accelerator uses standing wave X-band technology (wavelength approximately 3 centimeters) in order to minimize the mass of the accelerator. The injector design, smaller accelerator components, and low electron beam currents minimize radiation leakage. The unit may be used in a standard operating room without additional shielding. The mass of the accelerator gantry is 1250 Kg (weight approximately 2750 lbs) and the unit is transportable between operating rooms. Nominal electron energies are 4, 6, 9, and 12 MeV, and operate at selectable dose rates of 2.5 or 10 Gray per minute. D(max) depths in water for a 10 cm applicator are 0.7, 1.3, 1.7, and 2.0 for these energies, respectively. The depths of 80% dose are 1.2, 2.1, 3.1, and 3.9 cm, respectively. Absolute calibration using the American Association of Physicists in Medicine TG-51 protocol was performed for all electron energies using the 10 cm applicator. Applicator sizes ranged from 3 to 10 cm diameter for flat applicators, and 3 to 6 cm diameter for 30 degrees beveled applicators. Output factors were determined for all energies relative to the 10 cm flat applicator. Central axis depth dose profiles and isodose plots were determined for every applicator and energy combination. A quality assurance protocol, performed each day before patient treatment, was developed for output and energy constancy.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>11602008</pmid><doi>10.1120/1.1385128</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1526-9914
ispartof Journal of applied clinical medical physics, 2001, Vol.2 (3), p.121-130
issn 1526-9914
1526-9914
language eng
recordid cdi_proquest_journals_2289632670
source MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Calibration
Design
Dosimetry
Electrons
Energy
Film Dosimetry
Humans
Intraoperative Period
Neoplasms - radiotherapy
Neoplasms - surgery
Particle Accelerators
Patients
Phantoms, Imaging
Radiation therapy
Radiotherapy Dosage
Radiotherapy, Adjuvant - instrumentation
Radiotherapy, High-Energy - instrumentation
Workloads
title Commissioning of a mobile electron accelerator for intraoperative radiotherapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A54%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commissioning%20of%20a%20mobile%20electron%20accelerator%20for%20intraoperative%20radiotherapy&rft.jtitle=Journal%20of%20applied%20clinical%20medical%20physics&rft.au=Mills,%20M%20D&rft.date=2001&rft.volume=2&rft.issue=3&rft.spage=121&rft.epage=130&rft.pages=121-130&rft.issn=1526-9914&rft.eissn=1526-9914&rft_id=info:doi/10.1120/1.1385128&rft_dat=%3Cproquest_cross%3E2289632670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289632670&rft_id=info:pmid/11602008&rfr_iscdi=true