Commissioning of a mobile electron accelerator for intraoperative radiotherapy
Radiation performance characteristics of a dedicated intraoperative accelerator were determined to prepare the unit for clinical use. The linear accelerator uses standing wave X-band technology (wavelength approximately 3 centimeters) in order to minimize the mass of the accelerator. The injector de...
Gespeichert in:
Veröffentlicht in: | Journal of applied clinical medical physics 2001, Vol.2 (3), p.121-130 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 130 |
---|---|
container_issue | 3 |
container_start_page | 121 |
container_title | Journal of applied clinical medical physics |
container_volume | 2 |
creator | Mills, M D Fajardo, L C Wilson, D L Daves, J L Spanos, W J |
description | Radiation performance characteristics of a dedicated intraoperative accelerator were determined to prepare the unit for clinical use. The linear accelerator uses standing wave X-band technology (wavelength approximately 3 centimeters) in order to minimize the mass of the accelerator. The injector design, smaller accelerator components, and low electron beam currents minimize radiation leakage. The unit may be used in a standard operating room without additional shielding. The mass of the accelerator gantry is 1250 Kg (weight approximately 2750 lbs) and the unit is transportable between operating rooms. Nominal electron energies are 4, 6, 9, and 12 MeV, and operate at selectable dose rates of 2.5 or 10 Gray per minute. D(max) depths in water for a 10 cm applicator are 0.7, 1.3, 1.7, and 2.0 for these energies, respectively. The depths of 80% dose are 1.2, 2.1, 3.1, and 3.9 cm, respectively. Absolute calibration using the American Association of Physicists in Medicine TG-51 protocol was performed for all electron energies using the 10 cm applicator. Applicator sizes ranged from 3 to 10 cm diameter for flat applicators, and 3 to 6 cm diameter for 30 degrees beveled applicators. Output factors were determined for all energies relative to the 10 cm flat applicator. Central axis depth dose profiles and isodose plots were determined for every applicator and energy combination. A quality assurance protocol, performed each day before patient treatment, was developed for output and energy constancy. |
doi_str_mv | 10.1120/1.1385128 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2289632670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289632670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-3b97b6a02f13db87a72bcb094c0924ffaec654cef396b7a2ac4f4dba431b575f3</originalsourceid><addsrcrecordid>eNpNkE9LxDAQxYMo7rp68AtIwJOHrpkkTZujLP6DRS96DkmaaJZtU5OusN_eyhb0MMyb4cd78BC6BLIEoOQWlsDqEmh9hOZQUlFICfz4n56hs5w3hADUrD5FMwBBKCH1HL2sYtuGnEPsQveBo8cat9GErcNu6-yQYoe1taNOeogJ-3FCNyQd-99P-HY46SbE4XM8-_05OvF6m93FtBfo_eH-bfVUrF8fn1d368JSyoeCGVkZoQn1wBpTV7qixhoiuSWScu-1s6Lk1nkmhak01ZZ73hjNGZiyKj1boOuDb5_i187lQW3iLnVjpKK0loJRUZGRujlQNsWck_OqT6HVaa-AqN_mFKipuZG9mhx3pnXNHzlVxX4AMx9pFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289632670</pqid></control><display><type>article</type><title>Commissioning of a mobile electron accelerator for intraoperative radiotherapy</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Mills, M D ; Fajardo, L C ; Wilson, D L ; Daves, J L ; Spanos, W J</creator><creatorcontrib>Mills, M D ; Fajardo, L C ; Wilson, D L ; Daves, J L ; Spanos, W J</creatorcontrib><description>Radiation performance characteristics of a dedicated intraoperative accelerator were determined to prepare the unit for clinical use. The linear accelerator uses standing wave X-band technology (wavelength approximately 3 centimeters) in order to minimize the mass of the accelerator. The injector design, smaller accelerator components, and low electron beam currents minimize radiation leakage. The unit may be used in a standard operating room without additional shielding. The mass of the accelerator gantry is 1250 Kg (weight approximately 2750 lbs) and the unit is transportable between operating rooms. Nominal electron energies are 4, 6, 9, and 12 MeV, and operate at selectable dose rates of 2.5 or 10 Gray per minute. D(max) depths in water for a 10 cm applicator are 0.7, 1.3, 1.7, and 2.0 for these energies, respectively. The depths of 80% dose are 1.2, 2.1, 3.1, and 3.9 cm, respectively. Absolute calibration using the American Association of Physicists in Medicine TG-51 protocol was performed for all electron energies using the 10 cm applicator. Applicator sizes ranged from 3 to 10 cm diameter for flat applicators, and 3 to 6 cm diameter for 30 degrees beveled applicators. Output factors were determined for all energies relative to the 10 cm flat applicator. Central axis depth dose profiles and isodose plots were determined for every applicator and energy combination. A quality assurance protocol, performed each day before patient treatment, was developed for output and energy constancy.</description><identifier>ISSN: 1526-9914</identifier><identifier>EISSN: 1526-9914</identifier><identifier>DOI: 10.1120/1.1385128</identifier><identifier>PMID: 11602008</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Calibration ; Design ; Dosimetry ; Electrons ; Energy ; Film Dosimetry ; Humans ; Intraoperative Period ; Neoplasms - radiotherapy ; Neoplasms - surgery ; Particle Accelerators ; Patients ; Phantoms, Imaging ; Radiation therapy ; Radiotherapy Dosage ; Radiotherapy, Adjuvant - instrumentation ; Radiotherapy, High-Energy - instrumentation ; Workloads</subject><ispartof>Journal of applied clinical medical physics, 2001, Vol.2 (3), p.121-130</ispartof><rights>2001. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c224t-3b97b6a02f13db87a72bcb094c0924ffaec654cef396b7a2ac4f4dba431b575f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11602008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mills, M D</creatorcontrib><creatorcontrib>Fajardo, L C</creatorcontrib><creatorcontrib>Wilson, D L</creatorcontrib><creatorcontrib>Daves, J L</creatorcontrib><creatorcontrib>Spanos, W J</creatorcontrib><title>Commissioning of a mobile electron accelerator for intraoperative radiotherapy</title><title>Journal of applied clinical medical physics</title><addtitle>J Appl Clin Med Phys</addtitle><description>Radiation performance characteristics of a dedicated intraoperative accelerator were determined to prepare the unit for clinical use. The linear accelerator uses standing wave X-band technology (wavelength approximately 3 centimeters) in order to minimize the mass of the accelerator. The injector design, smaller accelerator components, and low electron beam currents minimize radiation leakage. The unit may be used in a standard operating room without additional shielding. The mass of the accelerator gantry is 1250 Kg (weight approximately 2750 lbs) and the unit is transportable between operating rooms. Nominal electron energies are 4, 6, 9, and 12 MeV, and operate at selectable dose rates of 2.5 or 10 Gray per minute. D(max) depths in water for a 10 cm applicator are 0.7, 1.3, 1.7, and 2.0 for these energies, respectively. The depths of 80% dose are 1.2, 2.1, 3.1, and 3.9 cm, respectively. Absolute calibration using the American Association of Physicists in Medicine TG-51 protocol was performed for all electron energies using the 10 cm applicator. Applicator sizes ranged from 3 to 10 cm diameter for flat applicators, and 3 to 6 cm diameter for 30 degrees beveled applicators. Output factors were determined for all energies relative to the 10 cm flat applicator. Central axis depth dose profiles and isodose plots were determined for every applicator and energy combination. A quality assurance protocol, performed each day before patient treatment, was developed for output and energy constancy.</description><subject>Calibration</subject><subject>Design</subject><subject>Dosimetry</subject><subject>Electrons</subject><subject>Energy</subject><subject>Film Dosimetry</subject><subject>Humans</subject><subject>Intraoperative Period</subject><subject>Neoplasms - radiotherapy</subject><subject>Neoplasms - surgery</subject><subject>Particle Accelerators</subject><subject>Patients</subject><subject>Phantoms, Imaging</subject><subject>Radiation therapy</subject><subject>Radiotherapy Dosage</subject><subject>Radiotherapy, Adjuvant - instrumentation</subject><subject>Radiotherapy, High-Energy - instrumentation</subject><subject>Workloads</subject><issn>1526-9914</issn><issn>1526-9914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpNkE9LxDAQxYMo7rp68AtIwJOHrpkkTZujLP6DRS96DkmaaJZtU5OusN_eyhb0MMyb4cd78BC6BLIEoOQWlsDqEmh9hOZQUlFICfz4n56hs5w3hADUrD5FMwBBKCH1HL2sYtuGnEPsQveBo8cat9GErcNu6-yQYoe1taNOeogJ-3FCNyQd-99P-HY46SbE4XM8-_05OvF6m93FtBfo_eH-bfVUrF8fn1d368JSyoeCGVkZoQn1wBpTV7qixhoiuSWScu-1s6Lk1nkmhak01ZZ73hjNGZiyKj1boOuDb5_i187lQW3iLnVjpKK0loJRUZGRujlQNsWck_OqT6HVaa-AqN_mFKipuZG9mhx3pnXNHzlVxX4AMx9pFg</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Mills, M D</creator><creator>Fajardo, L C</creator><creator>Wilson, D L</creator><creator>Daves, J L</creator><creator>Spanos, W J</creator><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2001</creationdate><title>Commissioning of a mobile electron accelerator for intraoperative radiotherapy</title><author>Mills, M D ; Fajardo, L C ; Wilson, D L ; Daves, J L ; Spanos, W J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-3b97b6a02f13db87a72bcb094c0924ffaec654cef396b7a2ac4f4dba431b575f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Calibration</topic><topic>Design</topic><topic>Dosimetry</topic><topic>Electrons</topic><topic>Energy</topic><topic>Film Dosimetry</topic><topic>Humans</topic><topic>Intraoperative Period</topic><topic>Neoplasms - radiotherapy</topic><topic>Neoplasms - surgery</topic><topic>Particle Accelerators</topic><topic>Patients</topic><topic>Phantoms, Imaging</topic><topic>Radiation therapy</topic><topic>Radiotherapy Dosage</topic><topic>Radiotherapy, Adjuvant - instrumentation</topic><topic>Radiotherapy, High-Energy - instrumentation</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mills, M D</creatorcontrib><creatorcontrib>Fajardo, L C</creatorcontrib><creatorcontrib>Wilson, D L</creatorcontrib><creatorcontrib>Daves, J L</creatorcontrib><creatorcontrib>Spanos, W J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied clinical medical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mills, M D</au><au>Fajardo, L C</au><au>Wilson, D L</au><au>Daves, J L</au><au>Spanos, W J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commissioning of a mobile electron accelerator for intraoperative radiotherapy</atitle><jtitle>Journal of applied clinical medical physics</jtitle><addtitle>J Appl Clin Med Phys</addtitle><date>2001</date><risdate>2001</risdate><volume>2</volume><issue>3</issue><spage>121</spage><epage>130</epage><pages>121-130</pages><issn>1526-9914</issn><eissn>1526-9914</eissn><abstract>Radiation performance characteristics of a dedicated intraoperative accelerator were determined to prepare the unit for clinical use. The linear accelerator uses standing wave X-band technology (wavelength approximately 3 centimeters) in order to minimize the mass of the accelerator. The injector design, smaller accelerator components, and low electron beam currents minimize radiation leakage. The unit may be used in a standard operating room without additional shielding. The mass of the accelerator gantry is 1250 Kg (weight approximately 2750 lbs) and the unit is transportable between operating rooms. Nominal electron energies are 4, 6, 9, and 12 MeV, and operate at selectable dose rates of 2.5 or 10 Gray per minute. D(max) depths in water for a 10 cm applicator are 0.7, 1.3, 1.7, and 2.0 for these energies, respectively. The depths of 80% dose are 1.2, 2.1, 3.1, and 3.9 cm, respectively. Absolute calibration using the American Association of Physicists in Medicine TG-51 protocol was performed for all electron energies using the 10 cm applicator. Applicator sizes ranged from 3 to 10 cm diameter for flat applicators, and 3 to 6 cm diameter for 30 degrees beveled applicators. Output factors were determined for all energies relative to the 10 cm flat applicator. Central axis depth dose profiles and isodose plots were determined for every applicator and energy combination. A quality assurance protocol, performed each day before patient treatment, was developed for output and energy constancy.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>11602008</pmid><doi>10.1120/1.1385128</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1526-9914 |
ispartof | Journal of applied clinical medical physics, 2001, Vol.2 (3), p.121-130 |
issn | 1526-9914 1526-9914 |
language | eng |
recordid | cdi_proquest_journals_2289632670 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Calibration Design Dosimetry Electrons Energy Film Dosimetry Humans Intraoperative Period Neoplasms - radiotherapy Neoplasms - surgery Particle Accelerators Patients Phantoms, Imaging Radiation therapy Radiotherapy Dosage Radiotherapy, Adjuvant - instrumentation Radiotherapy, High-Energy - instrumentation Workloads |
title | Commissioning of a mobile electron accelerator for intraoperative radiotherapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A54%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commissioning%20of%20a%20mobile%20electron%20accelerator%20for%20intraoperative%20radiotherapy&rft.jtitle=Journal%20of%20applied%20clinical%20medical%20physics&rft.au=Mills,%20M%20D&rft.date=2001&rft.volume=2&rft.issue=3&rft.spage=121&rft.epage=130&rft.pages=121-130&rft.issn=1526-9914&rft.eissn=1526-9914&rft_id=info:doi/10.1120/1.1385128&rft_dat=%3Cproquest_cross%3E2289632670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289632670&rft_id=info:pmid/11602008&rfr_iscdi=true |