Localizing gradient damage model with micro inertia effect for dynamic fracture

A localizing gradient damage model with micro inertia effect is proposed for the dynamic fracture of quasi-brittle materials. The objective is to achieve mesh independent solutions, and to avoid spurious effects associated with the conventional nonlocal enhancement. The proposed localizing gradient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2019-10, Vol.355, p.492-512
Hauptverfasser: Wang, Zhao, Shedbale, Amit Subhash, Kumar, Sachin, Poh, Leong Hien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 512
container_issue
container_start_page 492
container_title Computer methods in applied mechanics and engineering
container_volume 355
creator Wang, Zhao
Shedbale, Amit Subhash
Kumar, Sachin
Poh, Leong Hien
description A localizing gradient damage model with micro inertia effect is proposed for the dynamic fracture of quasi-brittle materials. The objective is to achieve mesh independent solutions, and to avoid spurious effects associated with the conventional nonlocal enhancement. The proposed localizing gradient damage model closely resembles the conventional gradient enhancement, albeit with an interaction domain that decreases with damage, complemented by a micro inertia effect. We first consider a classical crack branching problem, where the localizing gradient damage model is shown to resolve the mesh sensitivity issue, as well as to correctly reproduce the crack profile. Moreover, the micro inertia effect is observed to retard the crack velocity. Next, the tensile loading of a Polymethyl Methacrylate plate is considered. It is shown that the proposed model effectively captures the experimentally observed transition of crack profiles as the loading rate increases, i.e. from a straight crack propagation, to sub-branching, and finally to macro branching. Numerical results in terms of crack patterns, crack velocities, and fracture energies are in good agreement with the experimental data. To furthermore demonstrate the superior performance of the localizing gradient damage model, the macro branching problem is solved using the conventional gradient enhancement with micro inertia. It is shown that a spurious damage growth and an erroneous interaction between closely spaced cracks suppress the development of macro branching, even though reasonable values are obtained for the fracture energy and crack velocity. The localizing gradient damage model is able to fully resolve these issues.
doi_str_mv 10.1016/j.cma.2019.06.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2289569546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578251930372X</els_id><sourcerecordid>2289569546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-985506d7c5dc5a7e09f88d3a7131cc8396288b199f27500918826134cb8a2c023</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwFvA866TpMkmeJKiVSj0oueQ5k_N0t3U7Fapn96UenYuc5j3Zt78ELolUBMg4r6tbWdqCkTVIGqg6gxNiGxURQmT52gCMONVIym_RFfD0EIpSegErZbJmm38if0Gb7Jx0fcjdqYzG4-75PwWf8fxA3fR5oRj7_MYDfYheDvikDJ2h96UIQ7Z2HGf_TW6CGY7-Ju_PkXvz09v85dquVq8zh-XlWWUj5WSnINwjeXOctN4UEFKx0xDGLFWMiWolGuiVKANB1BESioIm9m1NNQCZVN0d9q7y-lz74dRt2mf-3JSUyoVF4rPRFGRk6qkH4bsg97l2Jl80AT0kZtudeGmj9w0CF24Fc_DyeNL_K_osx5soWK9i7l8rV2K_7h_AemJdGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289569546</pqid></control><display><type>article</type><title>Localizing gradient damage model with micro inertia effect for dynamic fracture</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Zhao ; Shedbale, Amit Subhash ; Kumar, Sachin ; Poh, Leong Hien</creator><creatorcontrib>Wang, Zhao ; Shedbale, Amit Subhash ; Kumar, Sachin ; Poh, Leong Hien</creatorcontrib><description>A localizing gradient damage model with micro inertia effect is proposed for the dynamic fracture of quasi-brittle materials. The objective is to achieve mesh independent solutions, and to avoid spurious effects associated with the conventional nonlocal enhancement. The proposed localizing gradient damage model closely resembles the conventional gradient enhancement, albeit with an interaction domain that decreases with damage, complemented by a micro inertia effect. We first consider a classical crack branching problem, where the localizing gradient damage model is shown to resolve the mesh sensitivity issue, as well as to correctly reproduce the crack profile. Moreover, the micro inertia effect is observed to retard the crack velocity. Next, the tensile loading of a Polymethyl Methacrylate plate is considered. It is shown that the proposed model effectively captures the experimentally observed transition of crack profiles as the loading rate increases, i.e. from a straight crack propagation, to sub-branching, and finally to macro branching. Numerical results in terms of crack patterns, crack velocities, and fracture energies are in good agreement with the experimental data. To furthermore demonstrate the superior performance of the localizing gradient damage model, the macro branching problem is solved using the conventional gradient enhancement with micro inertia. It is shown that a spurious damage growth and an erroneous interaction between closely spaced cracks suppress the development of macro branching, even though reasonable values are obtained for the fracture energy and crack velocity. The localizing gradient damage model is able to fully resolve these issues.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2019.06.029</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Brittle materials ; Crack propagation ; Damage assessment ; Damage localization ; Dynamic fracture ; Finite element method ; Fracture mechanics ; Fracture toughness ; Gradient damage ; Inertia ; Loading rate ; Micro inertia ; Micromorphic ; Polymethyl methacrylate ; Strain-rate effect</subject><ispartof>Computer methods in applied mechanics and engineering, 2019-10, Vol.355, p.492-512</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-985506d7c5dc5a7e09f88d3a7131cc8396288b199f27500918826134cb8a2c023</citedby><cites>FETCH-LOGICAL-c325t-985506d7c5dc5a7e09f88d3a7131cc8396288b199f27500918826134cb8a2c023</cites><orcidid>0000-0002-4696-5778 ; 0000-0002-8895-601X ; 0000-0002-7670-937X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2019.06.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Shedbale, Amit Subhash</creatorcontrib><creatorcontrib>Kumar, Sachin</creatorcontrib><creatorcontrib>Poh, Leong Hien</creatorcontrib><title>Localizing gradient damage model with micro inertia effect for dynamic fracture</title><title>Computer methods in applied mechanics and engineering</title><description>A localizing gradient damage model with micro inertia effect is proposed for the dynamic fracture of quasi-brittle materials. The objective is to achieve mesh independent solutions, and to avoid spurious effects associated with the conventional nonlocal enhancement. The proposed localizing gradient damage model closely resembles the conventional gradient enhancement, albeit with an interaction domain that decreases with damage, complemented by a micro inertia effect. We first consider a classical crack branching problem, where the localizing gradient damage model is shown to resolve the mesh sensitivity issue, as well as to correctly reproduce the crack profile. Moreover, the micro inertia effect is observed to retard the crack velocity. Next, the tensile loading of a Polymethyl Methacrylate plate is considered. It is shown that the proposed model effectively captures the experimentally observed transition of crack profiles as the loading rate increases, i.e. from a straight crack propagation, to sub-branching, and finally to macro branching. Numerical results in terms of crack patterns, crack velocities, and fracture energies are in good agreement with the experimental data. To furthermore demonstrate the superior performance of the localizing gradient damage model, the macro branching problem is solved using the conventional gradient enhancement with micro inertia. It is shown that a spurious damage growth and an erroneous interaction between closely spaced cracks suppress the development of macro branching, even though reasonable values are obtained for the fracture energy and crack velocity. The localizing gradient damage model is able to fully resolve these issues.</description><subject>Brittle materials</subject><subject>Crack propagation</subject><subject>Damage assessment</subject><subject>Damage localization</subject><subject>Dynamic fracture</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>Gradient damage</subject><subject>Inertia</subject><subject>Loading rate</subject><subject>Micro inertia</subject><subject>Micromorphic</subject><subject>Polymethyl methacrylate</subject><subject>Strain-rate effect</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwFvA866TpMkmeJKiVSj0oueQ5k_N0t3U7Fapn96UenYuc5j3Zt78ELolUBMg4r6tbWdqCkTVIGqg6gxNiGxURQmT52gCMONVIym_RFfD0EIpSegErZbJmm38if0Gb7Jx0fcjdqYzG4-75PwWf8fxA3fR5oRj7_MYDfYheDvikDJ2h96UIQ7Z2HGf_TW6CGY7-Ju_PkXvz09v85dquVq8zh-XlWWUj5WSnINwjeXOctN4UEFKx0xDGLFWMiWolGuiVKANB1BESioIm9m1NNQCZVN0d9q7y-lz74dRt2mf-3JSUyoVF4rPRFGRk6qkH4bsg97l2Jl80AT0kZtudeGmj9w0CF24Fc_DyeNL_K_osx5soWK9i7l8rV2K_7h_AemJdGI</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Wang, Zhao</creator><creator>Shedbale, Amit Subhash</creator><creator>Kumar, Sachin</creator><creator>Poh, Leong Hien</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4696-5778</orcidid><orcidid>https://orcid.org/0000-0002-8895-601X</orcidid><orcidid>https://orcid.org/0000-0002-7670-937X</orcidid></search><sort><creationdate>20191001</creationdate><title>Localizing gradient damage model with micro inertia effect for dynamic fracture</title><author>Wang, Zhao ; Shedbale, Amit Subhash ; Kumar, Sachin ; Poh, Leong Hien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-985506d7c5dc5a7e09f88d3a7131cc8396288b199f27500918826134cb8a2c023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brittle materials</topic><topic>Crack propagation</topic><topic>Damage assessment</topic><topic>Damage localization</topic><topic>Dynamic fracture</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>Gradient damage</topic><topic>Inertia</topic><topic>Loading rate</topic><topic>Micro inertia</topic><topic>Micromorphic</topic><topic>Polymethyl methacrylate</topic><topic>Strain-rate effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhao</creatorcontrib><creatorcontrib>Shedbale, Amit Subhash</creatorcontrib><creatorcontrib>Kumar, Sachin</creatorcontrib><creatorcontrib>Poh, Leong Hien</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhao</au><au>Shedbale, Amit Subhash</au><au>Kumar, Sachin</au><au>Poh, Leong Hien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localizing gradient damage model with micro inertia effect for dynamic fracture</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>355</volume><spage>492</spage><epage>512</epage><pages>492-512</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>A localizing gradient damage model with micro inertia effect is proposed for the dynamic fracture of quasi-brittle materials. The objective is to achieve mesh independent solutions, and to avoid spurious effects associated with the conventional nonlocal enhancement. The proposed localizing gradient damage model closely resembles the conventional gradient enhancement, albeit with an interaction domain that decreases with damage, complemented by a micro inertia effect. We first consider a classical crack branching problem, where the localizing gradient damage model is shown to resolve the mesh sensitivity issue, as well as to correctly reproduce the crack profile. Moreover, the micro inertia effect is observed to retard the crack velocity. Next, the tensile loading of a Polymethyl Methacrylate plate is considered. It is shown that the proposed model effectively captures the experimentally observed transition of crack profiles as the loading rate increases, i.e. from a straight crack propagation, to sub-branching, and finally to macro branching. Numerical results in terms of crack patterns, crack velocities, and fracture energies are in good agreement with the experimental data. To furthermore demonstrate the superior performance of the localizing gradient damage model, the macro branching problem is solved using the conventional gradient enhancement with micro inertia. It is shown that a spurious damage growth and an erroneous interaction between closely spaced cracks suppress the development of macro branching, even though reasonable values are obtained for the fracture energy and crack velocity. The localizing gradient damage model is able to fully resolve these issues.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2019.06.029</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4696-5778</orcidid><orcidid>https://orcid.org/0000-0002-8895-601X</orcidid><orcidid>https://orcid.org/0000-0002-7670-937X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2019-10, Vol.355, p.492-512
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2289569546
source Access via ScienceDirect (Elsevier)
subjects Brittle materials
Crack propagation
Damage assessment
Damage localization
Dynamic fracture
Finite element method
Fracture mechanics
Fracture toughness
Gradient damage
Inertia
Loading rate
Micro inertia
Micromorphic
Polymethyl methacrylate
Strain-rate effect
title Localizing gradient damage model with micro inertia effect for dynamic fracture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A09%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localizing%20gradient%20damage%20model%20with%20micro%20inertia%20effect%20for%20dynamic%20fracture&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Wang,%20Zhao&rft.date=2019-10-01&rft.volume=355&rft.spage=492&rft.epage=512&rft.pages=492-512&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2019.06.029&rft_dat=%3Cproquest_cross%3E2289569546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289569546&rft_id=info:pmid/&rft_els_id=S004578251930372X&rfr_iscdi=true