Artificial Neural Network and Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy to identify the chemical variables related to ripeness and variety classification of grapes for Protected. Designation of Origin wine production

[Display omitted] •FTIR analysis in grape skin allowed identifying sample variety using ANNs.•ATR fast analysis without pretreatment avoids undesired structural changes of sample.•Compounds affecting ripeness and classification were identified with Olden’s method.•Pectin, polysaccharides and special...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers and electronics in agriculture 2019-09, Vol.164, p.104922, Article 104922
Hauptverfasser: Murru, Clarissa, Chimeno-Trinchet, Christian, Díaz-García, Marta Elena, Badía-Laíño, Rosana, Fernández-González, Alfonso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104922
container_title Computers and electronics in agriculture
container_volume 164
creator Murru, Clarissa
Chimeno-Trinchet, Christian
Díaz-García, Marta Elena
Badía-Laíño, Rosana
Fernández-González, Alfonso
description [Display omitted] •FTIR analysis in grape skin allowed identifying sample variety using ANNs.•ATR fast analysis without pretreatment avoids undesired structural changes of sample.•Compounds affecting ripeness and classification were identified with Olden’s method.•Pectin, polysaccharides and specially fructose, have the strongest influence. The vineyard grown in the territories included in the Protected Designations of Origin (PDO) classification of the European Union, present unique organoleptic properties of colour, aroma and flavour. Development of techniques for identifying grape varieties or ripeness among other characteristics, are key interesting for the PDO control and quality. Attenuated total reflectance (ATR) allows fast recording spectra without sample pre-treatment, thus avoiding undesired physical and/or chemical changes of the sample. This method works in a rapid, non-destructive and easy-to-use way. The fast-fourier transform infrared spectroscopy (FTIR) analysis of five grape varieties (Alabarín blanco, Mencía, Verdejo negro, Albarín negro and Carrasquín) used for wine production of PDO Vino de Cangas provided information enough for the identification of grape class using artificial neural networks (ANN). Despite the statistical similitude of the FTIR spectra among different grapes and maturity state, ANN resulted to be a helpful tool for classifying grape samples according to the variety or to their ripeness degree. Furthermore, compounds present in grapes that can most influence such classification can be outlined from the ANN. In this context, pectin and polysaccharides are especially significant in variety and ripeness identification, whereas polyphenols and fructose provide useful information for ripeness degree classification of grapes.
doi_str_mv 10.1016/j.compag.2019.104922
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2289561406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168169919305940</els_id><sourcerecordid>2289561406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-357569120d49870a52776420d4570065445381e181c51462fb34a154db8ce2e63</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxiMEEkvhDThY4pzFdpx_F6RVoaVS1SJYzpbXmWy9ZO0wdlrtc_MCTDYVR07j8fxmPnu-LHsv-FpwUX08rG04jma_lly0dKVaKV9kK9HUMq8Fr19mK8KaXFRt-zp7E-OBU9429Sr7s8HkemedGdgdTHgO6SngL2Z8xzYpgZ9Mgo5tQ6Lid-gHsMl4C_lVmNABsi0aH_uAR3bjezRI8I-RIAzRhvHEUmCuA086dH4AZh_g6CwNezTozG6AyBCGswih6EbwEONZfyYgnZgdTIzzO01ywbPQsz2akRpJln3DkEgOujX7DNHt_T_oHt3eefbkPLARQzfZufI2e9WbIcK753iR_bz6sr38mt_eX99cbm5zWxQq5UVZl1UrJO8UrYqbUtZ1pea0rDmvSqXKohEgGmFLoSrZ7wplRKm6XWNBQlVcZB-WuST9e4KY9IE25klSS9m0ZSUUnym1UJb2FRF6PaI7GjxpwfVsrz7oxV4926sXe6nt09IG9INHskFH64Bs6RzSMnQX3P8H_AUXjrVC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289561406</pqid></control><display><type>article</type><title>Artificial Neural Network and Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy to identify the chemical variables related to ripeness and variety classification of grapes for Protected. Designation of Origin wine production</title><source>Elsevier ScienceDirect Journals</source><creator>Murru, Clarissa ; Chimeno-Trinchet, Christian ; Díaz-García, Marta Elena ; Badía-Laíño, Rosana ; Fernández-González, Alfonso</creator><creatorcontrib>Murru, Clarissa ; Chimeno-Trinchet, Christian ; Díaz-García, Marta Elena ; Badía-Laíño, Rosana ; Fernández-González, Alfonso</creatorcontrib><description>[Display omitted] •FTIR analysis in grape skin allowed identifying sample variety using ANNs.•ATR fast analysis without pretreatment avoids undesired structural changes of sample.•Compounds affecting ripeness and classification were identified with Olden’s method.•Pectin, polysaccharides and specially fructose, have the strongest influence. The vineyard grown in the territories included in the Protected Designations of Origin (PDO) classification of the European Union, present unique organoleptic properties of colour, aroma and flavour. Development of techniques for identifying grape varieties or ripeness among other characteristics, are key interesting for the PDO control and quality. Attenuated total reflectance (ATR) allows fast recording spectra without sample pre-treatment, thus avoiding undesired physical and/or chemical changes of the sample. This method works in a rapid, non-destructive and easy-to-use way. The fast-fourier transform infrared spectroscopy (FTIR) analysis of five grape varieties (Alabarín blanco, Mencía, Verdejo negro, Albarín negro and Carrasquín) used for wine production of PDO Vino de Cangas provided information enough for the identification of grape class using artificial neural networks (ANN). Despite the statistical similitude of the FTIR spectra among different grapes and maturity state, ANN resulted to be a helpful tool for classifying grape samples according to the variety or to their ripeness degree. Furthermore, compounds present in grapes that can most influence such classification can be outlined from the ANN. In this context, pectin and polysaccharides are especially significant in variety and ripeness identification, whereas polyphenols and fructose provide useful information for ripeness degree classification of grapes.</description><identifier>ISSN: 0168-1699</identifier><identifier>EISSN: 1872-7107</identifier><identifier>DOI: 10.1016/j.compag.2019.104922</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aroma ; Artificial neural networks ; ATR-FTIR ; Classification ; Connection weight algorithm ; Fast Fourier transformations ; Flavors ; Fructose ; Grapes ; Infrared analysis ; Infrared spectroscopy ; Neural networks ; Organic chemistry ; Pectin ; Polyphenols ; Polysaccharides ; Pretreatment ; Recording ; Reflectance ; Spectrum analysis ; Statistical methods ; Vineyards ; Wines</subject><ispartof>Computers and electronics in agriculture, 2019-09, Vol.164, p.104922, Article 104922</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-357569120d49870a52776420d4570065445381e181c51462fb34a154db8ce2e63</citedby><cites>FETCH-LOGICAL-c334t-357569120d49870a52776420d4570065445381e181c51462fb34a154db8ce2e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compag.2019.104922$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Murru, Clarissa</creatorcontrib><creatorcontrib>Chimeno-Trinchet, Christian</creatorcontrib><creatorcontrib>Díaz-García, Marta Elena</creatorcontrib><creatorcontrib>Badía-Laíño, Rosana</creatorcontrib><creatorcontrib>Fernández-González, Alfonso</creatorcontrib><title>Artificial Neural Network and Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy to identify the chemical variables related to ripeness and variety classification of grapes for Protected. Designation of Origin wine production</title><title>Computers and electronics in agriculture</title><description>[Display omitted] •FTIR analysis in grape skin allowed identifying sample variety using ANNs.•ATR fast analysis without pretreatment avoids undesired structural changes of sample.•Compounds affecting ripeness and classification were identified with Olden’s method.•Pectin, polysaccharides and specially fructose, have the strongest influence. The vineyard grown in the territories included in the Protected Designations of Origin (PDO) classification of the European Union, present unique organoleptic properties of colour, aroma and flavour. Development of techniques for identifying grape varieties or ripeness among other characteristics, are key interesting for the PDO control and quality. Attenuated total reflectance (ATR) allows fast recording spectra without sample pre-treatment, thus avoiding undesired physical and/or chemical changes of the sample. This method works in a rapid, non-destructive and easy-to-use way. The fast-fourier transform infrared spectroscopy (FTIR) analysis of five grape varieties (Alabarín blanco, Mencía, Verdejo negro, Albarín negro and Carrasquín) used for wine production of PDO Vino de Cangas provided information enough for the identification of grape class using artificial neural networks (ANN). Despite the statistical similitude of the FTIR spectra among different grapes and maturity state, ANN resulted to be a helpful tool for classifying grape samples according to the variety or to their ripeness degree. Furthermore, compounds present in grapes that can most influence such classification can be outlined from the ANN. In this context, pectin and polysaccharides are especially significant in variety and ripeness identification, whereas polyphenols and fructose provide useful information for ripeness degree classification of grapes.</description><subject>Aroma</subject><subject>Artificial neural networks</subject><subject>ATR-FTIR</subject><subject>Classification</subject><subject>Connection weight algorithm</subject><subject>Fast Fourier transformations</subject><subject>Flavors</subject><subject>Fructose</subject><subject>Grapes</subject><subject>Infrared analysis</subject><subject>Infrared spectroscopy</subject><subject>Neural networks</subject><subject>Organic chemistry</subject><subject>Pectin</subject><subject>Polyphenols</subject><subject>Polysaccharides</subject><subject>Pretreatment</subject><subject>Recording</subject><subject>Reflectance</subject><subject>Spectrum analysis</subject><subject>Statistical methods</subject><subject>Vineyards</subject><subject>Wines</subject><issn>0168-1699</issn><issn>1872-7107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQxiMEEkvhDThY4pzFdpx_F6RVoaVS1SJYzpbXmWy9ZO0wdlrtc_MCTDYVR07j8fxmPnu-LHsv-FpwUX08rG04jma_lly0dKVaKV9kK9HUMq8Fr19mK8KaXFRt-zp7E-OBU9429Sr7s8HkemedGdgdTHgO6SngL2Z8xzYpgZ9Mgo5tQ6Lid-gHsMl4C_lVmNABsi0aH_uAR3bjezRI8I-RIAzRhvHEUmCuA086dH4AZh_g6CwNezTozG6AyBCGswih6EbwEONZfyYgnZgdTIzzO01ywbPQsz2akRpJln3DkEgOujX7DNHt_T_oHt3eefbkPLARQzfZufI2e9WbIcK753iR_bz6sr38mt_eX99cbm5zWxQq5UVZl1UrJO8UrYqbUtZ1pea0rDmvSqXKohEgGmFLoSrZ7wplRKm6XWNBQlVcZB-WuST9e4KY9IE25klSS9m0ZSUUnym1UJb2FRF6PaI7GjxpwfVsrz7oxV4926sXe6nt09IG9INHskFH64Bs6RzSMnQX3P8H_AUXjrVC</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Murru, Clarissa</creator><creator>Chimeno-Trinchet, Christian</creator><creator>Díaz-García, Marta Elena</creator><creator>Badía-Laíño, Rosana</creator><creator>Fernández-González, Alfonso</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201909</creationdate><title>Artificial Neural Network and Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy to identify the chemical variables related to ripeness and variety classification of grapes for Protected. Designation of Origin wine production</title><author>Murru, Clarissa ; Chimeno-Trinchet, Christian ; Díaz-García, Marta Elena ; Badía-Laíño, Rosana ; Fernández-González, Alfonso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-357569120d49870a52776420d4570065445381e181c51462fb34a154db8ce2e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aroma</topic><topic>Artificial neural networks</topic><topic>ATR-FTIR</topic><topic>Classification</topic><topic>Connection weight algorithm</topic><topic>Fast Fourier transformations</topic><topic>Flavors</topic><topic>Fructose</topic><topic>Grapes</topic><topic>Infrared analysis</topic><topic>Infrared spectroscopy</topic><topic>Neural networks</topic><topic>Organic chemistry</topic><topic>Pectin</topic><topic>Polyphenols</topic><topic>Polysaccharides</topic><topic>Pretreatment</topic><topic>Recording</topic><topic>Reflectance</topic><topic>Spectrum analysis</topic><topic>Statistical methods</topic><topic>Vineyards</topic><topic>Wines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murru, Clarissa</creatorcontrib><creatorcontrib>Chimeno-Trinchet, Christian</creatorcontrib><creatorcontrib>Díaz-García, Marta Elena</creatorcontrib><creatorcontrib>Badía-Laíño, Rosana</creatorcontrib><creatorcontrib>Fernández-González, Alfonso</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers and electronics in agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murru, Clarissa</au><au>Chimeno-Trinchet, Christian</au><au>Díaz-García, Marta Elena</au><au>Badía-Laíño, Rosana</au><au>Fernández-González, Alfonso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Network and Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy to identify the chemical variables related to ripeness and variety classification of grapes for Protected. Designation of Origin wine production</atitle><jtitle>Computers and electronics in agriculture</jtitle><date>2019-09</date><risdate>2019</risdate><volume>164</volume><spage>104922</spage><pages>104922-</pages><artnum>104922</artnum><issn>0168-1699</issn><eissn>1872-7107</eissn><abstract>[Display omitted] •FTIR analysis in grape skin allowed identifying sample variety using ANNs.•ATR fast analysis without pretreatment avoids undesired structural changes of sample.•Compounds affecting ripeness and classification were identified with Olden’s method.•Pectin, polysaccharides and specially fructose, have the strongest influence. The vineyard grown in the territories included in the Protected Designations of Origin (PDO) classification of the European Union, present unique organoleptic properties of colour, aroma and flavour. Development of techniques for identifying grape varieties or ripeness among other characteristics, are key interesting for the PDO control and quality. Attenuated total reflectance (ATR) allows fast recording spectra without sample pre-treatment, thus avoiding undesired physical and/or chemical changes of the sample. This method works in a rapid, non-destructive and easy-to-use way. The fast-fourier transform infrared spectroscopy (FTIR) analysis of five grape varieties (Alabarín blanco, Mencía, Verdejo negro, Albarín negro and Carrasquín) used for wine production of PDO Vino de Cangas provided information enough for the identification of grape class using artificial neural networks (ANN). Despite the statistical similitude of the FTIR spectra among different grapes and maturity state, ANN resulted to be a helpful tool for classifying grape samples according to the variety or to their ripeness degree. Furthermore, compounds present in grapes that can most influence such classification can be outlined from the ANN. In this context, pectin and polysaccharides are especially significant in variety and ripeness identification, whereas polyphenols and fructose provide useful information for ripeness degree classification of grapes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.compag.2019.104922</doi></addata></record>
fulltext fulltext
identifier ISSN: 0168-1699
ispartof Computers and electronics in agriculture, 2019-09, Vol.164, p.104922, Article 104922
issn 0168-1699
1872-7107
language eng
recordid cdi_proquest_journals_2289561406
source Elsevier ScienceDirect Journals
subjects Aroma
Artificial neural networks
ATR-FTIR
Classification
Connection weight algorithm
Fast Fourier transformations
Flavors
Fructose
Grapes
Infrared analysis
Infrared spectroscopy
Neural networks
Organic chemistry
Pectin
Polyphenols
Polysaccharides
Pretreatment
Recording
Reflectance
Spectrum analysis
Statistical methods
Vineyards
Wines
title Artificial Neural Network and Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy to identify the chemical variables related to ripeness and variety classification of grapes for Protected. Designation of Origin wine production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A20%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Network%20and%20Attenuated%20Total%20Reflectance-Fourier%20Transform%20Infrared%20Spectroscopy%20to%20identify%20the%20chemical%20variables%20related%20to%20ripeness%20and%20variety%20classification%20of%20grapes%20for%20Protected.%20Designation%20of%20Origin%20wine%20production&rft.jtitle=Computers%20and%20electronics%20in%20agriculture&rft.au=Murru,%20Clarissa&rft.date=2019-09&rft.volume=164&rft.spage=104922&rft.pages=104922-&rft.artnum=104922&rft.issn=0168-1699&rft.eissn=1872-7107&rft_id=info:doi/10.1016/j.compag.2019.104922&rft_dat=%3Cproquest_cross%3E2289561406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289561406&rft_id=info:pmid/&rft_els_id=S0168169919305940&rfr_iscdi=true