The Strata Model Predicting Advertising Effectiveness: A Neural-Network Approach Enhances Predictability of Consumer Decision Making

The use of neuroscience methods in advertising research continues to grow, but it remains controversial. One area of neuroscience that has the potential to advance understanding of consumer decision making is neural-network analysis. The authors draw a parallel between means–end decision theory and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advertising research 2019-09, Vol.59 (3), p.268-280
Hauptverfasser: Reynolds, Thomas J., Phillips, Joan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue 3
container_start_page 268
container_title Journal of advertising research
container_volume 59
creator Reynolds, Thomas J.
Phillips, Joan M.
description The use of neuroscience methods in advertising research continues to grow, but it remains controversial. One area of neuroscience that has the potential to advance understanding of consumer decision making is neural-network analysis. The authors draw a parallel between means–end decision theory and neural-network analysis. They then apply these two theoretical perspectives to validate empirically a recognized advertising-strategy assessment (Strata) model. The results of an analysis of 240 television advertisements offer support for the neural-network-based Strata model. The article concludes with recommendations for how to improve advertising effectiveness.
doi_str_mv 10.2501/JAR-2018-037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2289558186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289558186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-51889b50eea84bbcf3e402c2aeba4c55cfe605e7c8a074ef6a585ff998badd1a3</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMoWFdv_oCCV6OTtNMmx7KsX6woup5Dmk60y9quSXfBf2_LenrnHR5m4GHsUsCNRBC3T9UblyAUh6w8Yokoc-BCgz5mCYAUXOVan7KzGNcwdkBMGK6-KH0fgh1s-tw3tElfAzWtG9ruM62aPYWhjdO88J7G7Z46ivGcnXi7iXTxnzP2cbdYzR_48uX-cV4tuZMoB45CKV0jEFmV17XzGeUgnbRU29whOk8FIJVOWShz8oVFhd5rrWrbNMJmM3Z1uLsN_c-O4mDW_S5040sjpdKISqhipK4PlAt9jIG82Yb224ZfI8BMYswoxkxizCgm-wMn_1Wp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289558186</pqid></control><display><type>article</type><title>The Strata Model Predicting Advertising Effectiveness: A Neural-Network Approach Enhances Predictability of Consumer Decision Making</title><source>Business Source Complete</source><creator>Reynolds, Thomas J. ; Phillips, Joan M.</creator><creatorcontrib>Reynolds, Thomas J. ; Phillips, Joan M.</creatorcontrib><description>The use of neuroscience methods in advertising research continues to grow, but it remains controversial. One area of neuroscience that has the potential to advance understanding of consumer decision making is neural-network analysis. The authors draw a parallel between means–end decision theory and neural-network analysis. They then apply these two theoretical perspectives to validate empirically a recognized advertising-strategy assessment (Strata) model. The results of an analysis of 240 television advertisements offer support for the neural-network-based Strata model. The article concludes with recommendations for how to improve advertising effectiveness.</description><identifier>ISSN: 0021-8499</identifier><identifier>EISSN: 1740-1909</identifier><identifier>DOI: 10.2501/JAR-2018-037</identifier><language>eng</language><publisher>New York: Advertising Research Foundation</publisher><subject>Advertising ; Consumer behavior ; Decision making ; Decision theory ; Neural networks ; Neurosciences</subject><ispartof>Journal of advertising research, 2019-09, Vol.59 (3), p.268-280</ispartof><rights>Copyright Advertising Research Foundation Sep 1, 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-51889b50eea84bbcf3e402c2aeba4c55cfe605e7c8a074ef6a585ff998badd1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Reynolds, Thomas J.</creatorcontrib><creatorcontrib>Phillips, Joan M.</creatorcontrib><title>The Strata Model Predicting Advertising Effectiveness: A Neural-Network Approach Enhances Predictability of Consumer Decision Making</title><title>Journal of advertising research</title><description>The use of neuroscience methods in advertising research continues to grow, but it remains controversial. One area of neuroscience that has the potential to advance understanding of consumer decision making is neural-network analysis. The authors draw a parallel between means–end decision theory and neural-network analysis. They then apply these two theoretical perspectives to validate empirically a recognized advertising-strategy assessment (Strata) model. The results of an analysis of 240 television advertisements offer support for the neural-network-based Strata model. The article concludes with recommendations for how to improve advertising effectiveness.</description><subject>Advertising</subject><subject>Consumer behavior</subject><subject>Decision making</subject><subject>Decision theory</subject><subject>Neural networks</subject><subject>Neurosciences</subject><issn>0021-8499</issn><issn>1740-1909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhoMoWFdv_oCCV6OTtNMmx7KsX6woup5Dmk60y9quSXfBf2_LenrnHR5m4GHsUsCNRBC3T9UblyAUh6w8Yokoc-BCgz5mCYAUXOVan7KzGNcwdkBMGK6-KH0fgh1s-tw3tElfAzWtG9ruM62aPYWhjdO88J7G7Z46ivGcnXi7iXTxnzP2cbdYzR_48uX-cV4tuZMoB45CKV0jEFmV17XzGeUgnbRU29whOk8FIJVOWShz8oVFhd5rrWrbNMJmM3Z1uLsN_c-O4mDW_S5040sjpdKISqhipK4PlAt9jIG82Yb224ZfI8BMYswoxkxizCgm-wMn_1Wp</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Reynolds, Thomas J.</creator><creator>Phillips, Joan M.</creator><general>Advertising Research Foundation</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190901</creationdate><title>The Strata Model Predicting Advertising Effectiveness</title><author>Reynolds, Thomas J. ; Phillips, Joan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-51889b50eea84bbcf3e402c2aeba4c55cfe605e7c8a074ef6a585ff998badd1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Advertising</topic><topic>Consumer behavior</topic><topic>Decision making</topic><topic>Decision theory</topic><topic>Neural networks</topic><topic>Neurosciences</topic><toplevel>online_resources</toplevel><creatorcontrib>Reynolds, Thomas J.</creatorcontrib><creatorcontrib>Phillips, Joan M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of advertising research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reynolds, Thomas J.</au><au>Phillips, Joan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Strata Model Predicting Advertising Effectiveness: A Neural-Network Approach Enhances Predictability of Consumer Decision Making</atitle><jtitle>Journal of advertising research</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>59</volume><issue>3</issue><spage>268</spage><epage>280</epage><pages>268-280</pages><issn>0021-8499</issn><eissn>1740-1909</eissn><abstract>The use of neuroscience methods in advertising research continues to grow, but it remains controversial. One area of neuroscience that has the potential to advance understanding of consumer decision making is neural-network analysis. The authors draw a parallel between means–end decision theory and neural-network analysis. They then apply these two theoretical perspectives to validate empirically a recognized advertising-strategy assessment (Strata) model. The results of an analysis of 240 television advertisements offer support for the neural-network-based Strata model. The article concludes with recommendations for how to improve advertising effectiveness.</abstract><cop>New York</cop><pub>Advertising Research Foundation</pub><doi>10.2501/JAR-2018-037</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8499
ispartof Journal of advertising research, 2019-09, Vol.59 (3), p.268-280
issn 0021-8499
1740-1909
language eng
recordid cdi_proquest_journals_2289558186
source Business Source Complete
subjects Advertising
Consumer behavior
Decision making
Decision theory
Neural networks
Neurosciences
title The Strata Model Predicting Advertising Effectiveness: A Neural-Network Approach Enhances Predictability of Consumer Decision Making
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Strata%20Model%20Predicting%20Advertising%20Effectiveness:%20A%20Neural-Network%20Approach%20Enhances%20Predictability%20of%20Consumer%20Decision%20Making&rft.jtitle=Journal%20of%20advertising%20research&rft.au=Reynolds,%20Thomas%20J.&rft.date=2019-09-01&rft.volume=59&rft.issue=3&rft.spage=268&rft.epage=280&rft.pages=268-280&rft.issn=0021-8499&rft.eissn=1740-1909&rft_id=info:doi/10.2501/JAR-2018-037&rft_dat=%3Cproquest_cross%3E2289558186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289558186&rft_id=info:pmid/&rfr_iscdi=true