The Strata Model Predicting Advertising Effectiveness: A Neural-Network Approach Enhances Predictability of Consumer Decision Making
The use of neuroscience methods in advertising research continues to grow, but it remains controversial. One area of neuroscience that has the potential to advance understanding of consumer decision making is neural-network analysis. The authors draw a parallel between means–end decision theory and...
Gespeichert in:
Veröffentlicht in: | Journal of advertising research 2019-09, Vol.59 (3), p.268-280 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 280 |
---|---|
container_issue | 3 |
container_start_page | 268 |
container_title | Journal of advertising research |
container_volume | 59 |
creator | Reynolds, Thomas J. Phillips, Joan M. |
description | The use of neuroscience methods in advertising research continues to grow, but it remains controversial. One area of neuroscience that has the potential to advance understanding of consumer decision making is neural-network analysis. The authors draw a parallel between means–end decision theory and neural-network analysis. They then apply these two theoretical perspectives to validate empirically a recognized advertising-strategy assessment (Strata) model. The results of an analysis of 240 television advertisements offer support for the neural-network-based Strata model. The article concludes with recommendations for how to improve advertising effectiveness. |
doi_str_mv | 10.2501/JAR-2018-037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2289558186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289558186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-51889b50eea84bbcf3e402c2aeba4c55cfe605e7c8a074ef6a585ff998badd1a3</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMoWFdv_oCCV6OTtNMmx7KsX6woup5Dmk60y9quSXfBf2_LenrnHR5m4GHsUsCNRBC3T9UblyAUh6w8Yokoc-BCgz5mCYAUXOVan7KzGNcwdkBMGK6-KH0fgh1s-tw3tElfAzWtG9ruM62aPYWhjdO88J7G7Z46ivGcnXi7iXTxnzP2cbdYzR_48uX-cV4tuZMoB45CKV0jEFmV17XzGeUgnbRU29whOk8FIJVOWShz8oVFhd5rrWrbNMJmM3Z1uLsN_c-O4mDW_S5040sjpdKISqhipK4PlAt9jIG82Yb224ZfI8BMYswoxkxizCgm-wMn_1Wp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289558186</pqid></control><display><type>article</type><title>The Strata Model Predicting Advertising Effectiveness: A Neural-Network Approach Enhances Predictability of Consumer Decision Making</title><source>Business Source Complete</source><creator>Reynolds, Thomas J. ; Phillips, Joan M.</creator><creatorcontrib>Reynolds, Thomas J. ; Phillips, Joan M.</creatorcontrib><description>The use of neuroscience methods in advertising research continues to grow, but it remains controversial. One area of neuroscience that has the potential to advance understanding of consumer decision making is neural-network analysis. The authors draw a parallel between means–end decision theory and neural-network analysis. They then apply these two theoretical perspectives to validate empirically a recognized advertising-strategy assessment (Strata) model. The results of an analysis of 240 television advertisements offer support for the neural-network-based Strata model. The article concludes with recommendations for how to improve advertising effectiveness.</description><identifier>ISSN: 0021-8499</identifier><identifier>EISSN: 1740-1909</identifier><identifier>DOI: 10.2501/JAR-2018-037</identifier><language>eng</language><publisher>New York: Advertising Research Foundation</publisher><subject>Advertising ; Consumer behavior ; Decision making ; Decision theory ; Neural networks ; Neurosciences</subject><ispartof>Journal of advertising research, 2019-09, Vol.59 (3), p.268-280</ispartof><rights>Copyright Advertising Research Foundation Sep 1, 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-51889b50eea84bbcf3e402c2aeba4c55cfe605e7c8a074ef6a585ff998badd1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Reynolds, Thomas J.</creatorcontrib><creatorcontrib>Phillips, Joan M.</creatorcontrib><title>The Strata Model Predicting Advertising Effectiveness: A Neural-Network Approach Enhances Predictability of Consumer Decision Making</title><title>Journal of advertising research</title><description>The use of neuroscience methods in advertising research continues to grow, but it remains controversial. One area of neuroscience that has the potential to advance understanding of consumer decision making is neural-network analysis. The authors draw a parallel between means–end decision theory and neural-network analysis. They then apply these two theoretical perspectives to validate empirically a recognized advertising-strategy assessment (Strata) model. The results of an analysis of 240 television advertisements offer support for the neural-network-based Strata model. The article concludes with recommendations for how to improve advertising effectiveness.</description><subject>Advertising</subject><subject>Consumer behavior</subject><subject>Decision making</subject><subject>Decision theory</subject><subject>Neural networks</subject><subject>Neurosciences</subject><issn>0021-8499</issn><issn>1740-1909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhoMoWFdv_oCCV6OTtNMmx7KsX6woup5Dmk60y9quSXfBf2_LenrnHR5m4GHsUsCNRBC3T9UblyAUh6w8Yokoc-BCgz5mCYAUXOVan7KzGNcwdkBMGK6-KH0fgh1s-tw3tElfAzWtG9ruM62aPYWhjdO88J7G7Z46ivGcnXi7iXTxnzP2cbdYzR_48uX-cV4tuZMoB45CKV0jEFmV17XzGeUgnbRU29whOk8FIJVOWShz8oVFhd5rrWrbNMJmM3Z1uLsN_c-O4mDW_S5040sjpdKISqhipK4PlAt9jIG82Yb224ZfI8BMYswoxkxizCgm-wMn_1Wp</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Reynolds, Thomas J.</creator><creator>Phillips, Joan M.</creator><general>Advertising Research Foundation</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190901</creationdate><title>The Strata Model Predicting Advertising Effectiveness</title><author>Reynolds, Thomas J. ; Phillips, Joan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-51889b50eea84bbcf3e402c2aeba4c55cfe605e7c8a074ef6a585ff998badd1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Advertising</topic><topic>Consumer behavior</topic><topic>Decision making</topic><topic>Decision theory</topic><topic>Neural networks</topic><topic>Neurosciences</topic><toplevel>online_resources</toplevel><creatorcontrib>Reynolds, Thomas J.</creatorcontrib><creatorcontrib>Phillips, Joan M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of advertising research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reynolds, Thomas J.</au><au>Phillips, Joan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Strata Model Predicting Advertising Effectiveness: A Neural-Network Approach Enhances Predictability of Consumer Decision Making</atitle><jtitle>Journal of advertising research</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>59</volume><issue>3</issue><spage>268</spage><epage>280</epage><pages>268-280</pages><issn>0021-8499</issn><eissn>1740-1909</eissn><abstract>The use of neuroscience methods in advertising research continues to grow, but it remains controversial. One area of neuroscience that has the potential to advance understanding of consumer decision making is neural-network analysis. The authors draw a parallel between means–end decision theory and neural-network analysis. They then apply these two theoretical perspectives to validate empirically a recognized advertising-strategy assessment (Strata) model. The results of an analysis of 240 television advertisements offer support for the neural-network-based Strata model. The article concludes with recommendations for how to improve advertising effectiveness.</abstract><cop>New York</cop><pub>Advertising Research Foundation</pub><doi>10.2501/JAR-2018-037</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8499 |
ispartof | Journal of advertising research, 2019-09, Vol.59 (3), p.268-280 |
issn | 0021-8499 1740-1909 |
language | eng |
recordid | cdi_proquest_journals_2289558186 |
source | Business Source Complete |
subjects | Advertising Consumer behavior Decision making Decision theory Neural networks Neurosciences |
title | The Strata Model Predicting Advertising Effectiveness: A Neural-Network Approach Enhances Predictability of Consumer Decision Making |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Strata%20Model%20Predicting%20Advertising%20Effectiveness:%20A%20Neural-Network%20Approach%20Enhances%20Predictability%20of%20Consumer%20Decision%20Making&rft.jtitle=Journal%20of%20advertising%20research&rft.au=Reynolds,%20Thomas%20J.&rft.date=2019-09-01&rft.volume=59&rft.issue=3&rft.spage=268&rft.epage=280&rft.pages=268-280&rft.issn=0021-8499&rft.eissn=1740-1909&rft_id=info:doi/10.2501/JAR-2018-037&rft_dat=%3Cproquest_cross%3E2289558186%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289558186&rft_id=info:pmid/&rfr_iscdi=true |