Influence of grazing intensity on patterns and structuring processes in plant–pollinator networks in a subtropical grassland
Understanding how disturbances influence interaction networks is a central but still poorly explored issue in ecology and management. The goal of this study was to test how the structure of plant–pollinator networks and the structuring processes are influenced by grazing in a subtropical grassland c...
Gespeichert in:
Veröffentlicht in: | Arthropod-plant interactions 2019-10, Vol.13 (5), p.757-770 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 770 |
---|---|
container_issue | 5 |
container_start_page | 757 |
container_title | Arthropod-plant interactions |
container_volume | 13 |
creator | Oleques, Suiane Santos Vizentin-Bugoni, Jeferson Overbeck, Gerhard Ernst |
description | Understanding how disturbances influence interaction networks is a central but still poorly explored issue in ecology and management. The goal of this study was to test how the structure of plant–pollinator networks and the structuring processes are influenced by grazing in a subtropical grassland community on the southern hemisphere. Twelve sampling plots were allocated in order to cover a grazing gradient ranging from overgrazed to ungrazed sites. For each plot, we created a quantitative matrix containing all observed pairwise insect–plant interactions and described morphology, phenology and abundances of each species. We fitted a series of models to test the influence of grazing intensity on metrics describing networks structure. We finally used probabilistic matrices, maximum likelihood and model selection to investigate the processes influencing frequencies of interactions across the gradient of disturbance. Grazing intensity influenced connectance, specialization and interaction evenness, while the number of species and links, nestedness and modularity were less variable. Species abundance was the most important determinant of interaction frequencies regardless of grazing intensity. In contrast to northern hemisphere pollination networks studied so far, these subtropical plant–pollinator networks and their structuring processes were remarkably consistent along the grazing gradient. We argue that this results from the dominance of generalist Asteraceae species, which are selectively avoided by cattle and play a core role in attracting a wide range of pollinators and thereby structuring plant–pollinator interactions, providing therefore stability. |
doi_str_mv | 10.1007/s11829-019-09699-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2289321770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2289321770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9528ac10afa015bab83d96a4c17b9ec3649a52eaa532357d41e877f5d335add03</originalsourceid><addsrcrecordid>eNp9kM9KxDAQxosoqKsv4CnguZo_zSY5yuI_WPCi5zCbplKtSc2kiB7Ed_ANfRLbXdGbh2EG5vvmG35FccToCaNUnSJjmpuSsrHM3JhSbxV7TCteal2p7d9Zyt1iH_GB0rngldor3q9D0w0-OE9iQ-4TvLXhnrQh-4BtfiUxkB5y9ikggVATzGlweUiTqk_ReUSPo570HYT89fHZx65rA-SYSPD5JabH9RoIDqucYt866KYcxNFQHxQ7DXToD3_6rLi7OL9dXJXLm8vrxdmydIKZXBrJNThGoQHK5ApWWtRmDpVjamW8E_PKgOQeQAoupKor5rVSjayFkFDXVMyK483d8efnwWO2D3FIYYy0nGsjOFNqUvGNyqWImHxj-9Q-QXq1jNqJs91wtiNnu-Zs9WgSGxP2ExWf_k7_4_oGgWuFPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289321770</pqid></control><display><type>article</type><title>Influence of grazing intensity on patterns and structuring processes in plant–pollinator networks in a subtropical grassland</title><source>SpringerLink Journals - AutoHoldings</source><creator>Oleques, Suiane Santos ; Vizentin-Bugoni, Jeferson ; Overbeck, Gerhard Ernst</creator><creatorcontrib>Oleques, Suiane Santos ; Vizentin-Bugoni, Jeferson ; Overbeck, Gerhard Ernst</creatorcontrib><description>Understanding how disturbances influence interaction networks is a central but still poorly explored issue in ecology and management. The goal of this study was to test how the structure of plant–pollinator networks and the structuring processes are influenced by grazing in a subtropical grassland community on the southern hemisphere. Twelve sampling plots were allocated in order to cover a grazing gradient ranging from overgrazed to ungrazed sites. For each plot, we created a quantitative matrix containing all observed pairwise insect–plant interactions and described morphology, phenology and abundances of each species. We fitted a series of models to test the influence of grazing intensity on metrics describing networks structure. We finally used probabilistic matrices, maximum likelihood and model selection to investigate the processes influencing frequencies of interactions across the gradient of disturbance. Grazing intensity influenced connectance, specialization and interaction evenness, while the number of species and links, nestedness and modularity were less variable. Species abundance was the most important determinant of interaction frequencies regardless of grazing intensity. In contrast to northern hemisphere pollination networks studied so far, these subtropical plant–pollinator networks and their structuring processes were remarkably consistent along the grazing gradient. We argue that this results from the dominance of generalist Asteraceae species, which are selectively avoided by cattle and play a core role in attracting a wide range of pollinators and thereby structuring plant–pollinator interactions, providing therefore stability.</description><identifier>ISSN: 1872-8855</identifier><identifier>EISSN: 1872-8847</identifier><identifier>DOI: 10.1007/s11829-019-09699-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Behavioral Sciences ; Biomedical and Life Sciences ; Ecological monitoring ; Ecology ; Entomology ; Grasslands ; Grazing ; Grazing intensity ; Herbivores ; Insects ; Invertebrates ; Life Sciences ; Modularity ; Morphology ; Networks ; Northern Hemisphere ; Original Paper ; Plant Pathology ; Plant reproduction ; Plant Sciences ; Pollination ; Pollinators ; Southern Hemisphere ; Specialization ; Species</subject><ispartof>Arthropod-plant interactions, 2019-10, Vol.13 (5), p.757-770</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Arthropod-Plant Interactions is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9528ac10afa015bab83d96a4c17b9ec3649a52eaa532357d41e877f5d335add03</citedby><cites>FETCH-LOGICAL-c319t-9528ac10afa015bab83d96a4c17b9ec3649a52eaa532357d41e877f5d335add03</cites><orcidid>0000-0003-4536-4820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11829-019-09699-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11829-019-09699-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Oleques, Suiane Santos</creatorcontrib><creatorcontrib>Vizentin-Bugoni, Jeferson</creatorcontrib><creatorcontrib>Overbeck, Gerhard Ernst</creatorcontrib><title>Influence of grazing intensity on patterns and structuring processes in plant–pollinator networks in a subtropical grassland</title><title>Arthropod-plant interactions</title><addtitle>Arthropod-Plant Interactions</addtitle><description>Understanding how disturbances influence interaction networks is a central but still poorly explored issue in ecology and management. The goal of this study was to test how the structure of plant–pollinator networks and the structuring processes are influenced by grazing in a subtropical grassland community on the southern hemisphere. Twelve sampling plots were allocated in order to cover a grazing gradient ranging from overgrazed to ungrazed sites. For each plot, we created a quantitative matrix containing all observed pairwise insect–plant interactions and described morphology, phenology and abundances of each species. We fitted a series of models to test the influence of grazing intensity on metrics describing networks structure. We finally used probabilistic matrices, maximum likelihood and model selection to investigate the processes influencing frequencies of interactions across the gradient of disturbance. Grazing intensity influenced connectance, specialization and interaction evenness, while the number of species and links, nestedness and modularity were less variable. Species abundance was the most important determinant of interaction frequencies regardless of grazing intensity. In contrast to northern hemisphere pollination networks studied so far, these subtropical plant–pollinator networks and their structuring processes were remarkably consistent along the grazing gradient. We argue that this results from the dominance of generalist Asteraceae species, which are selectively avoided by cattle and play a core role in attracting a wide range of pollinators and thereby structuring plant–pollinator interactions, providing therefore stability.</description><subject>Behavioral Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Ecological monitoring</subject><subject>Ecology</subject><subject>Entomology</subject><subject>Grasslands</subject><subject>Grazing</subject><subject>Grazing intensity</subject><subject>Herbivores</subject><subject>Insects</subject><subject>Invertebrates</subject><subject>Life Sciences</subject><subject>Modularity</subject><subject>Morphology</subject><subject>Networks</subject><subject>Northern Hemisphere</subject><subject>Original Paper</subject><subject>Plant Pathology</subject><subject>Plant reproduction</subject><subject>Plant Sciences</subject><subject>Pollination</subject><subject>Pollinators</subject><subject>Southern Hemisphere</subject><subject>Specialization</subject><subject>Species</subject><issn>1872-8855</issn><issn>1872-8847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9KxDAQxosoqKsv4CnguZo_zSY5yuI_WPCi5zCbplKtSc2kiB7Ed_ANfRLbXdGbh2EG5vvmG35FccToCaNUnSJjmpuSsrHM3JhSbxV7TCteal2p7d9Zyt1iH_GB0rngldor3q9D0w0-OE9iQ-4TvLXhnrQh-4BtfiUxkB5y9ikggVATzGlweUiTqk_ReUSPo570HYT89fHZx65rA-SYSPD5JabH9RoIDqucYt866KYcxNFQHxQ7DXToD3_6rLi7OL9dXJXLm8vrxdmydIKZXBrJNThGoQHK5ApWWtRmDpVjamW8E_PKgOQeQAoupKor5rVSjayFkFDXVMyK483d8efnwWO2D3FIYYy0nGsjOFNqUvGNyqWImHxj-9Q-QXq1jNqJs91wtiNnu-Zs9WgSGxP2ExWf_k7_4_oGgWuFPw</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Oleques, Suiane Santos</creator><creator>Vizentin-Bugoni, Jeferson</creator><creator>Overbeck, Gerhard Ernst</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-4536-4820</orcidid></search><sort><creationdate>20191001</creationdate><title>Influence of grazing intensity on patterns and structuring processes in plant–pollinator networks in a subtropical grassland</title><author>Oleques, Suiane Santos ; Vizentin-Bugoni, Jeferson ; Overbeck, Gerhard Ernst</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9528ac10afa015bab83d96a4c17b9ec3649a52eaa532357d41e877f5d335add03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Behavioral Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Ecological monitoring</topic><topic>Ecology</topic><topic>Entomology</topic><topic>Grasslands</topic><topic>Grazing</topic><topic>Grazing intensity</topic><topic>Herbivores</topic><topic>Insects</topic><topic>Invertebrates</topic><topic>Life Sciences</topic><topic>Modularity</topic><topic>Morphology</topic><topic>Networks</topic><topic>Northern Hemisphere</topic><topic>Original Paper</topic><topic>Plant Pathology</topic><topic>Plant reproduction</topic><topic>Plant Sciences</topic><topic>Pollination</topic><topic>Pollinators</topic><topic>Southern Hemisphere</topic><topic>Specialization</topic><topic>Species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oleques, Suiane Santos</creatorcontrib><creatorcontrib>Vizentin-Bugoni, Jeferson</creatorcontrib><creatorcontrib>Overbeck, Gerhard Ernst</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Arthropod-plant interactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oleques, Suiane Santos</au><au>Vizentin-Bugoni, Jeferson</au><au>Overbeck, Gerhard Ernst</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of grazing intensity on patterns and structuring processes in plant–pollinator networks in a subtropical grassland</atitle><jtitle>Arthropod-plant interactions</jtitle><stitle>Arthropod-Plant Interactions</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>13</volume><issue>5</issue><spage>757</spage><epage>770</epage><pages>757-770</pages><issn>1872-8855</issn><eissn>1872-8847</eissn><abstract>Understanding how disturbances influence interaction networks is a central but still poorly explored issue in ecology and management. The goal of this study was to test how the structure of plant–pollinator networks and the structuring processes are influenced by grazing in a subtropical grassland community on the southern hemisphere. Twelve sampling plots were allocated in order to cover a grazing gradient ranging from overgrazed to ungrazed sites. For each plot, we created a quantitative matrix containing all observed pairwise insect–plant interactions and described morphology, phenology and abundances of each species. We fitted a series of models to test the influence of grazing intensity on metrics describing networks structure. We finally used probabilistic matrices, maximum likelihood and model selection to investigate the processes influencing frequencies of interactions across the gradient of disturbance. Grazing intensity influenced connectance, specialization and interaction evenness, while the number of species and links, nestedness and modularity were less variable. Species abundance was the most important determinant of interaction frequencies regardless of grazing intensity. In contrast to northern hemisphere pollination networks studied so far, these subtropical plant–pollinator networks and their structuring processes were remarkably consistent along the grazing gradient. We argue that this results from the dominance of generalist Asteraceae species, which are selectively avoided by cattle and play a core role in attracting a wide range of pollinators and thereby structuring plant–pollinator interactions, providing therefore stability.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11829-019-09699-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4536-4820</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1872-8855 |
ispartof | Arthropod-plant interactions, 2019-10, Vol.13 (5), p.757-770 |
issn | 1872-8855 1872-8847 |
language | eng |
recordid | cdi_proquest_journals_2289321770 |
source | SpringerLink Journals - AutoHoldings |
subjects | Behavioral Sciences Biomedical and Life Sciences Ecological monitoring Ecology Entomology Grasslands Grazing Grazing intensity Herbivores Insects Invertebrates Life Sciences Modularity Morphology Networks Northern Hemisphere Original Paper Plant Pathology Plant reproduction Plant Sciences Pollination Pollinators Southern Hemisphere Specialization Species |
title | Influence of grazing intensity on patterns and structuring processes in plant–pollinator networks in a subtropical grassland |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20grazing%20intensity%20on%20patterns%20and%20structuring%20processes%20in%20plant%E2%80%93pollinator%20networks%20in%20a%20subtropical%20grassland&rft.jtitle=Arthropod-plant%20interactions&rft.au=Oleques,%20Suiane%20Santos&rft.date=2019-10-01&rft.volume=13&rft.issue=5&rft.spage=757&rft.epage=770&rft.pages=757-770&rft.issn=1872-8855&rft.eissn=1872-8847&rft_id=info:doi/10.1007/s11829-019-09699-8&rft_dat=%3Cproquest_cross%3E2289321770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289321770&rft_id=info:pmid/&rfr_iscdi=true |