Strategies for Patrolling Missions with Multiple UAVs

This paper proposes a set of strategies for the patrolling problem using multiple UAVs and as a result, improving our original NC-Drone algorithm. We present four strategies: Watershed Strategy, Time-based Strategies, Evaporation Strategy, and Communication-Frequency Strategy. The novel strategies c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2020-09, Vol.99 (3-4), p.499-515
Hauptverfasser: Kappel, Kristofer S., Cabreira, Tauã M., Marins, João L., de Brisolara, Lisane B., Ferreira, Paulo R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 515
container_issue 3-4
container_start_page 499
container_title Journal of intelligent & robotic systems
container_volume 99
creator Kappel, Kristofer S.
Cabreira, Tauã M.
Marins, João L.
de Brisolara, Lisane B.
Ferreira, Paulo R.
description This paper proposes a set of strategies for the patrolling problem using multiple UAVs and as a result, improving our original NC-Drone algorithm. We present four strategies: Watershed Strategy, Time-based Strategies, Evaporation Strategy, and Communication-Frequency Strategy. The novel strategies consider important aspects of the patrolling movement, such as time, uncertainty, and communication. Results point out that these strategies improve the centralized version of the NC-Drone considering the uniform distribution of visits and drastically reduce in 76% the standard deviation, making the algorithm more stable. Based on the results, we found that there is a trade-off between the evaluated metrics, making it necessary to perform a large number of turns to obtain a more spatially distributed patrolling. We also present a series of strategy combinations, achieving slight improvements as more combinations are adopted. The resulting algorithm from the combination of all strategies reduces the communication frequency in 50 times and outperforms the original version of the NC-Drone in 4.5%.
doi_str_mv 10.1007/s10846-019-01090-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2289143636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724156906</galeid><sourcerecordid>A724156906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-bcf145056f93337191cd4436166ab42cbec88368631b2cb47db4ddb0bb3ff49c3</originalsourceid><addsrcrecordid>eNp9kN9LwzAQx4MoOKf_gE8FnzsvP5o2j2OoEzYUdL6GJk1qRtfMpEP8782s4Jscx3HHfe7HF6FrDDMMUN5GDBXjOWCRHATk5ARNcFHSHBiIUzQBQXAORPBzdBHjFgBEVYgJKl6GUA-mdSZm1ofsuR6C7zrXt9naxeh8H7NPN7xn60M3uH1nss38LV6iM1t30Vz9xina3N-9Lpb56unhcTFf5ZoBHnKlLWYFFNwKSmmJBdYNY5RjzmvFiFZGVxXlFadYpYyVjWJNo0Apai0Tmk7RzTh3H_zHwcRBbv0h9GmlJKQSOM1KNkWzsautOyNdb336SSdrzM5p3xvrUn1eEoYLLuAIkBHQwccYjJX74HZ1-JIY5FFPOeopk57yR09JEkRHKKbmvjXh75Z_qG8u1Ha7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289143636</pqid></control><display><type>article</type><title>Strategies for Patrolling Missions with Multiple UAVs</title><source>SpringerLink Journals</source><creator>Kappel, Kristofer S. ; Cabreira, Tauã M. ; Marins, João L. ; de Brisolara, Lisane B. ; Ferreira, Paulo R.</creator><creatorcontrib>Kappel, Kristofer S. ; Cabreira, Tauã M. ; Marins, João L. ; de Brisolara, Lisane B. ; Ferreira, Paulo R.</creatorcontrib><description>This paper proposes a set of strategies for the patrolling problem using multiple UAVs and as a result, improving our original NC-Drone algorithm. We present four strategies: Watershed Strategy, Time-based Strategies, Evaporation Strategy, and Communication-Frequency Strategy. The novel strategies consider important aspects of the patrolling movement, such as time, uncertainty, and communication. Results point out that these strategies improve the centralized version of the NC-Drone considering the uniform distribution of visits and drastically reduce in 76% the standard deviation, making the algorithm more stable. Based on the results, we found that there is a trade-off between the evaluated metrics, making it necessary to perform a large number of turns to obtain a more spatially distributed patrolling. We also present a series of strategy combinations, achieving slight improvements as more combinations are adopted. The resulting algorithm from the combination of all strategies reduces the communication frequency in 50 times and outperforms the original version of the NC-Drone in 4.5%.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-019-01090-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Communication ; Control ; Drone aircraft ; Electrical Engineering ; Engineering ; Mechanical Engineering ; Mechatronics ; Patrols ; Robotics ; Strategy ; Unmanned aerial vehicles</subject><ispartof>Journal of intelligent &amp; robotic systems, 2020-09, Vol.99 (3-4), p.499-515</ispartof><rights>Springer Nature B.V. 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-bcf145056f93337191cd4436166ab42cbec88368631b2cb47db4ddb0bb3ff49c3</citedby><cites>FETCH-LOGICAL-c401t-bcf145056f93337191cd4436166ab42cbec88368631b2cb47db4ddb0bb3ff49c3</cites><orcidid>0000-0002-8134-4272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-019-01090-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-019-01090-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kappel, Kristofer S.</creatorcontrib><creatorcontrib>Cabreira, Tauã M.</creatorcontrib><creatorcontrib>Marins, João L.</creatorcontrib><creatorcontrib>de Brisolara, Lisane B.</creatorcontrib><creatorcontrib>Ferreira, Paulo R.</creatorcontrib><title>Strategies for Patrolling Missions with Multiple UAVs</title><title>Journal of intelligent &amp; robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>This paper proposes a set of strategies for the patrolling problem using multiple UAVs and as a result, improving our original NC-Drone algorithm. We present four strategies: Watershed Strategy, Time-based Strategies, Evaporation Strategy, and Communication-Frequency Strategy. The novel strategies consider important aspects of the patrolling movement, such as time, uncertainty, and communication. Results point out that these strategies improve the centralized version of the NC-Drone considering the uniform distribution of visits and drastically reduce in 76% the standard deviation, making the algorithm more stable. Based on the results, we found that there is a trade-off between the evaluated metrics, making it necessary to perform a large number of turns to obtain a more spatially distributed patrolling. We also present a series of strategy combinations, achieving slight improvements as more combinations are adopted. The resulting algorithm from the combination of all strategies reduces the communication frequency in 50 times and outperforms the original version of the NC-Drone in 4.5%.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Communication</subject><subject>Control</subject><subject>Drone aircraft</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Patrols</subject><subject>Robotics</subject><subject>Strategy</subject><subject>Unmanned aerial vehicles</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kN9LwzAQx4MoOKf_gE8FnzsvP5o2j2OoEzYUdL6GJk1qRtfMpEP8782s4Jscx3HHfe7HF6FrDDMMUN5GDBXjOWCRHATk5ARNcFHSHBiIUzQBQXAORPBzdBHjFgBEVYgJKl6GUA-mdSZm1ofsuR6C7zrXt9naxeh8H7NPN7xn60M3uH1nss38LV6iM1t30Vz9xina3N-9Lpb56unhcTFf5ZoBHnKlLWYFFNwKSmmJBdYNY5RjzmvFiFZGVxXlFadYpYyVjWJNo0Apai0Tmk7RzTh3H_zHwcRBbv0h9GmlJKQSOM1KNkWzsautOyNdb336SSdrzM5p3xvrUn1eEoYLLuAIkBHQwccYjJX74HZ1-JIY5FFPOeopk57yR09JEkRHKKbmvjXh75Z_qG8u1Ha7</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Kappel, Kristofer S.</creator><creator>Cabreira, Tauã M.</creator><creator>Marins, João L.</creator><creator>de Brisolara, Lisane B.</creator><creator>Ferreira, Paulo R.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8134-4272</orcidid></search><sort><creationdate>20200901</creationdate><title>Strategies for Patrolling Missions with Multiple UAVs</title><author>Kappel, Kristofer S. ; Cabreira, Tauã M. ; Marins, João L. ; de Brisolara, Lisane B. ; Ferreira, Paulo R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-bcf145056f93337191cd4436166ab42cbec88368631b2cb47db4ddb0bb3ff49c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Communication</topic><topic>Control</topic><topic>Drone aircraft</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Patrols</topic><topic>Robotics</topic><topic>Strategy</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kappel, Kristofer S.</creatorcontrib><creatorcontrib>Cabreira, Tauã M.</creatorcontrib><creatorcontrib>Marins, João L.</creatorcontrib><creatorcontrib>de Brisolara, Lisane B.</creatorcontrib><creatorcontrib>Ferreira, Paulo R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kappel, Kristofer S.</au><au>Cabreira, Tauã M.</au><au>Marins, João L.</au><au>de Brisolara, Lisane B.</au><au>Ferreira, Paulo R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategies for Patrolling Missions with Multiple UAVs</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>99</volume><issue>3-4</issue><spage>499</spage><epage>515</epage><pages>499-515</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>This paper proposes a set of strategies for the patrolling problem using multiple UAVs and as a result, improving our original NC-Drone algorithm. We present four strategies: Watershed Strategy, Time-based Strategies, Evaporation Strategy, and Communication-Frequency Strategy. The novel strategies consider important aspects of the patrolling movement, such as time, uncertainty, and communication. Results point out that these strategies improve the centralized version of the NC-Drone considering the uniform distribution of visits and drastically reduce in 76% the standard deviation, making the algorithm more stable. Based on the results, we found that there is a trade-off between the evaluated metrics, making it necessary to perform a large number of turns to obtain a more spatially distributed patrolling. We also present a series of strategy combinations, achieving slight improvements as more combinations are adopted. The resulting algorithm from the combination of all strategies reduces the communication frequency in 50 times and outperforms the original version of the NC-Drone in 4.5%.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-019-01090-2</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8134-4272</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2020-09, Vol.99 (3-4), p.499-515
issn 0921-0296
1573-0409
language eng
recordid cdi_proquest_journals_2289143636
source SpringerLink Journals
subjects Algorithms
Artificial Intelligence
Communication
Control
Drone aircraft
Electrical Engineering
Engineering
Mechanical Engineering
Mechatronics
Patrols
Robotics
Strategy
Unmanned aerial vehicles
title Strategies for Patrolling Missions with Multiple UAVs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategies%20for%20Patrolling%20Missions%20with%20Multiple%20UAVs&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Kappel,%20Kristofer%20S.&rft.date=2020-09-01&rft.volume=99&rft.issue=3-4&rft.spage=499&rft.epage=515&rft.pages=499-515&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-019-01090-2&rft_dat=%3Cgale_proqu%3EA724156906%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2289143636&rft_id=info:pmid/&rft_galeid=A724156906&rfr_iscdi=true