Thermo-mechanical analysis of nonlinear heterogeneous materials by second-order reduced asymptotic expansion approach
An effective second-order reduced asymptotic expansion (SRAE) approach is proposed to analyze the thermo-mechanical coupling problems of nonlinear periodic heterogeneous materials. The first-order and second-order nonlinear unit cell solutions at a microscale obtained by calculating the different mu...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2019-12, Vol.178-179, p.91-107 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 107 |
---|---|
container_issue | |
container_start_page | 91 |
container_title | International journal of solids and structures |
container_volume | 178-179 |
creator | Yang, Zhiqiang Hao, Zhiwei Sun, Yi Liu, Yizhi Dong, Hao |
description | An effective second-order reduced asymptotic expansion (SRAE) approach is proposed to analyze the thermo-mechanical coupling problems of nonlinear periodic heterogeneous materials. The first-order and second-order nonlinear unit cell solutions at a microscale obtained by calculating the different multiscale cell functions are given at first. Then, the homogenization coefficients are evaluated, and the nonlinear homogenized equations defined on whole structure are solved, successively. Also, the temperature and displacement fields are constructed as second-order multiscale approximate solutions by assembling the distinct local cell solutions and homogenized solutions. The main features of the proposed approach are: (i) an effective model reduction scheme for computing high-order nonlinear unit cell problems and (ii) an asymptotic high-order homogenization solution that does not need high-order continuity of the macroscale solutions. Further, the corresponding finite element-difference algorithms based on the SRAE approach are given in detail. Finally, by some typical numerical examples, the availability and correctness of the proposed algorithms are confirmed. The computational results clearly demonstrate that the SRAE approach reported in this work are efficient and valid to predict the macroscopic thermo-mechanical properties, and can catch the microscale information of the heterogenous materials accurately. |
doi_str_mv | 10.1016/j.ijsolstr.2019.06.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2288678808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768319302987</els_id><sourcerecordid>2288678808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-d78ed273a58a9582fc8129661005efaf39b5eab3b42060af173fe876ee2c6fb33</originalsourceid><addsrcrecordid>eNqFkEGL1TAUhYMo-Bz9CxJw3XqTvJemO2XQcWBgNuM63KY3vpQ2qUkrvn9vhqdrV5cD55zL-Rh7L6AVIPTHqQ1TSXPZcitB9C3oFqR4wQ7CdH0jxVG_ZAcACU2njXrN3pQyAcBR9XBg-9OZ8pKahdwZY3A4c4w4X0ooPHkeU5xDJMz8TBvl9IMipb3wBasKOBc-XHghl-LYpDxS5pnG3dHIsVyWdUtbcJx-rxhLSJHjuuaE7vyWvfI1TO_-3hv2_euXp9tvzcPj3f3t54fGKWO2ZuwMjbJTeDLYn4z0zgjZay0ATuTRq344EQ5qOErQgF50ypPpNJF02g9K3bAP19769udOZbNT2nPdV6yUxujOGDDVpa8ul1Mpmbxdc1gwX6wA-4zYTvYfYvuM2IK2FXENfroGqW74FSjb4gLFOj9kcpsdU_hfxR-sdoxB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288678808</pqid></control><display><type>article</type><title>Thermo-mechanical analysis of nonlinear heterogeneous materials by second-order reduced asymptotic expansion approach</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Zhiqiang ; Hao, Zhiwei ; Sun, Yi ; Liu, Yizhi ; Dong, Hao</creator><creatorcontrib>Yang, Zhiqiang ; Hao, Zhiwei ; Sun, Yi ; Liu, Yizhi ; Dong, Hao</creatorcontrib><description>An effective second-order reduced asymptotic expansion (SRAE) approach is proposed to analyze the thermo-mechanical coupling problems of nonlinear periodic heterogeneous materials. The first-order and second-order nonlinear unit cell solutions at a microscale obtained by calculating the different multiscale cell functions are given at first. Then, the homogenization coefficients are evaluated, and the nonlinear homogenized equations defined on whole structure are solved, successively. Also, the temperature and displacement fields are constructed as second-order multiscale approximate solutions by assembling the distinct local cell solutions and homogenized solutions. The main features of the proposed approach are: (i) an effective model reduction scheme for computing high-order nonlinear unit cell problems and (ii) an asymptotic high-order homogenization solution that does not need high-order continuity of the macroscale solutions. Further, the corresponding finite element-difference algorithms based on the SRAE approach are given in detail. Finally, by some typical numerical examples, the availability and correctness of the proposed algorithms are confirmed. The computational results clearly demonstrate that the SRAE approach reported in this work are efficient and valid to predict the macroscopic thermo-mechanical properties, and can catch the microscale information of the heterogenous materials accurately.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2019.06.021</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Asymptotic series ; Homogenization ; Mechanical properties ; Model reduction ; Multiscale analysis ; Nonlinear analysis ; Nonlinear equations ; Nonlinear periodic composites ; Reduced order homogenization ; SRAE algorithms ; Thermo-mechanical analysis ; Thermomechanical analysis ; Thermomechanical properties ; Unit cell</subject><ispartof>International journal of solids and structures, 2019-12, Vol.178-179, p.91-107</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-d78ed273a58a9582fc8129661005efaf39b5eab3b42060af173fe876ee2c6fb33</citedby><cites>FETCH-LOGICAL-c388t-d78ed273a58a9582fc8129661005efaf39b5eab3b42060af173fe876ee2c6fb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020768319302987$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Yang, Zhiqiang</creatorcontrib><creatorcontrib>Hao, Zhiwei</creatorcontrib><creatorcontrib>Sun, Yi</creatorcontrib><creatorcontrib>Liu, Yizhi</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><title>Thermo-mechanical analysis of nonlinear heterogeneous materials by second-order reduced asymptotic expansion approach</title><title>International journal of solids and structures</title><description>An effective second-order reduced asymptotic expansion (SRAE) approach is proposed to analyze the thermo-mechanical coupling problems of nonlinear periodic heterogeneous materials. The first-order and second-order nonlinear unit cell solutions at a microscale obtained by calculating the different multiscale cell functions are given at first. Then, the homogenization coefficients are evaluated, and the nonlinear homogenized equations defined on whole structure are solved, successively. Also, the temperature and displacement fields are constructed as second-order multiscale approximate solutions by assembling the distinct local cell solutions and homogenized solutions. The main features of the proposed approach are: (i) an effective model reduction scheme for computing high-order nonlinear unit cell problems and (ii) an asymptotic high-order homogenization solution that does not need high-order continuity of the macroscale solutions. Further, the corresponding finite element-difference algorithms based on the SRAE approach are given in detail. Finally, by some typical numerical examples, the availability and correctness of the proposed algorithms are confirmed. The computational results clearly demonstrate that the SRAE approach reported in this work are efficient and valid to predict the macroscopic thermo-mechanical properties, and can catch the microscale information of the heterogenous materials accurately.</description><subject>Algorithms</subject><subject>Asymptotic series</subject><subject>Homogenization</subject><subject>Mechanical properties</subject><subject>Model reduction</subject><subject>Multiscale analysis</subject><subject>Nonlinear analysis</subject><subject>Nonlinear equations</subject><subject>Nonlinear periodic composites</subject><subject>Reduced order homogenization</subject><subject>SRAE algorithms</subject><subject>Thermo-mechanical analysis</subject><subject>Thermomechanical analysis</subject><subject>Thermomechanical properties</subject><subject>Unit cell</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEGL1TAUhYMo-Bz9CxJw3XqTvJemO2XQcWBgNuM63KY3vpQ2qUkrvn9vhqdrV5cD55zL-Rh7L6AVIPTHqQ1TSXPZcitB9C3oFqR4wQ7CdH0jxVG_ZAcACU2njXrN3pQyAcBR9XBg-9OZ8pKahdwZY3A4c4w4X0ooPHkeU5xDJMz8TBvl9IMipb3wBasKOBc-XHghl-LYpDxS5pnG3dHIsVyWdUtbcJx-rxhLSJHjuuaE7vyWvfI1TO_-3hv2_euXp9tvzcPj3f3t54fGKWO2ZuwMjbJTeDLYn4z0zgjZay0ATuTRq344EQ5qOErQgF50ypPpNJF02g9K3bAP19769udOZbNT2nPdV6yUxujOGDDVpa8ul1Mpmbxdc1gwX6wA-4zYTvYfYvuM2IK2FXENfroGqW74FSjb4gLFOj9kcpsdU_hfxR-sdoxB</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Yang, Zhiqiang</creator><creator>Hao, Zhiwei</creator><creator>Sun, Yi</creator><creator>Liu, Yizhi</creator><creator>Dong, Hao</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20191201</creationdate><title>Thermo-mechanical analysis of nonlinear heterogeneous materials by second-order reduced asymptotic expansion approach</title><author>Yang, Zhiqiang ; Hao, Zhiwei ; Sun, Yi ; Liu, Yizhi ; Dong, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-d78ed273a58a9582fc8129661005efaf39b5eab3b42060af173fe876ee2c6fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Asymptotic series</topic><topic>Homogenization</topic><topic>Mechanical properties</topic><topic>Model reduction</topic><topic>Multiscale analysis</topic><topic>Nonlinear analysis</topic><topic>Nonlinear equations</topic><topic>Nonlinear periodic composites</topic><topic>Reduced order homogenization</topic><topic>SRAE algorithms</topic><topic>Thermo-mechanical analysis</topic><topic>Thermomechanical analysis</topic><topic>Thermomechanical properties</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhiqiang</creatorcontrib><creatorcontrib>Hao, Zhiwei</creatorcontrib><creatorcontrib>Sun, Yi</creatorcontrib><creatorcontrib>Liu, Yizhi</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhiqiang</au><au>Hao, Zhiwei</au><au>Sun, Yi</au><au>Liu, Yizhi</au><au>Dong, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-mechanical analysis of nonlinear heterogeneous materials by second-order reduced asymptotic expansion approach</atitle><jtitle>International journal of solids and structures</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>178-179</volume><spage>91</spage><epage>107</epage><pages>91-107</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>An effective second-order reduced asymptotic expansion (SRAE) approach is proposed to analyze the thermo-mechanical coupling problems of nonlinear periodic heterogeneous materials. The first-order and second-order nonlinear unit cell solutions at a microscale obtained by calculating the different multiscale cell functions are given at first. Then, the homogenization coefficients are evaluated, and the nonlinear homogenized equations defined on whole structure are solved, successively. Also, the temperature and displacement fields are constructed as second-order multiscale approximate solutions by assembling the distinct local cell solutions and homogenized solutions. The main features of the proposed approach are: (i) an effective model reduction scheme for computing high-order nonlinear unit cell problems and (ii) an asymptotic high-order homogenization solution that does not need high-order continuity of the macroscale solutions. Further, the corresponding finite element-difference algorithms based on the SRAE approach are given in detail. Finally, by some typical numerical examples, the availability and correctness of the proposed algorithms are confirmed. The computational results clearly demonstrate that the SRAE approach reported in this work are efficient and valid to predict the macroscopic thermo-mechanical properties, and can catch the microscale information of the heterogenous materials accurately.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2019.06.021</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2019-12, Vol.178-179, p.91-107 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_proquest_journals_2288678808 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Asymptotic series Homogenization Mechanical properties Model reduction Multiscale analysis Nonlinear analysis Nonlinear equations Nonlinear periodic composites Reduced order homogenization SRAE algorithms Thermo-mechanical analysis Thermomechanical analysis Thermomechanical properties Unit cell |
title | Thermo-mechanical analysis of nonlinear heterogeneous materials by second-order reduced asymptotic expansion approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-mechanical%20analysis%20of%20nonlinear%20heterogeneous%20materials%20by%20second-order%20reduced%20asymptotic%20expansion%20approach&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Yang,%20Zhiqiang&rft.date=2019-12-01&rft.volume=178-179&rft.spage=91&rft.epage=107&rft.pages=91-107&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2019.06.021&rft_dat=%3Cproquest_cross%3E2288678808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288678808&rft_id=info:pmid/&rft_els_id=S0020768319302987&rfr_iscdi=true |