Thermo-mechanical analysis of nonlinear heterogeneous materials by second-order reduced asymptotic expansion approach

An effective second-order reduced asymptotic expansion (SRAE) approach is proposed to analyze the thermo-mechanical coupling problems of nonlinear periodic heterogeneous materials. The first-order and second-order nonlinear unit cell solutions at a microscale obtained by calculating the different mu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2019-12, Vol.178-179, p.91-107
Hauptverfasser: Yang, Zhiqiang, Hao, Zhiwei, Sun, Yi, Liu, Yizhi, Dong, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107
container_issue
container_start_page 91
container_title International journal of solids and structures
container_volume 178-179
creator Yang, Zhiqiang
Hao, Zhiwei
Sun, Yi
Liu, Yizhi
Dong, Hao
description An effective second-order reduced asymptotic expansion (SRAE) approach is proposed to analyze the thermo-mechanical coupling problems of nonlinear periodic heterogeneous materials. The first-order and second-order nonlinear unit cell solutions at a microscale obtained by calculating the different multiscale cell functions are given at first. Then, the homogenization coefficients are evaluated, and the nonlinear homogenized equations defined on whole structure are solved, successively. Also, the temperature and displacement fields are constructed as second-order multiscale approximate solutions by assembling the distinct local cell solutions and homogenized solutions. The main features of the proposed approach are: (i) an effective model reduction scheme for computing high-order nonlinear unit cell problems and (ii) an asymptotic high-order homogenization solution that does not need high-order continuity of the macroscale solutions. Further, the corresponding finite element-difference algorithms based on the SRAE approach are given in detail. Finally, by some typical numerical examples, the availability and correctness of the proposed algorithms are confirmed. The computational results clearly demonstrate that the SRAE approach reported in this work are efficient and valid to predict the macroscopic thermo-mechanical properties, and can catch the microscale information of the heterogenous materials accurately.
doi_str_mv 10.1016/j.ijsolstr.2019.06.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2288678808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768319302987</els_id><sourcerecordid>2288678808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-d78ed273a58a9582fc8129661005efaf39b5eab3b42060af173fe876ee2c6fb33</originalsourceid><addsrcrecordid>eNqFkEGL1TAUhYMo-Bz9CxJw3XqTvJemO2XQcWBgNuM63KY3vpQ2qUkrvn9vhqdrV5cD55zL-Rh7L6AVIPTHqQ1TSXPZcitB9C3oFqR4wQ7CdH0jxVG_ZAcACU2njXrN3pQyAcBR9XBg-9OZ8pKahdwZY3A4c4w4X0ooPHkeU5xDJMz8TBvl9IMipb3wBasKOBc-XHghl-LYpDxS5pnG3dHIsVyWdUtbcJx-rxhLSJHjuuaE7vyWvfI1TO_-3hv2_euXp9tvzcPj3f3t54fGKWO2ZuwMjbJTeDLYn4z0zgjZay0ATuTRq344EQ5qOErQgF50ypPpNJF02g9K3bAP19769udOZbNT2nPdV6yUxujOGDDVpa8ul1Mpmbxdc1gwX6wA-4zYTvYfYvuM2IK2FXENfroGqW74FSjb4gLFOj9kcpsdU_hfxR-sdoxB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288678808</pqid></control><display><type>article</type><title>Thermo-mechanical analysis of nonlinear heterogeneous materials by second-order reduced asymptotic expansion approach</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yang, Zhiqiang ; Hao, Zhiwei ; Sun, Yi ; Liu, Yizhi ; Dong, Hao</creator><creatorcontrib>Yang, Zhiqiang ; Hao, Zhiwei ; Sun, Yi ; Liu, Yizhi ; Dong, Hao</creatorcontrib><description>An effective second-order reduced asymptotic expansion (SRAE) approach is proposed to analyze the thermo-mechanical coupling problems of nonlinear periodic heterogeneous materials. The first-order and second-order nonlinear unit cell solutions at a microscale obtained by calculating the different multiscale cell functions are given at first. Then, the homogenization coefficients are evaluated, and the nonlinear homogenized equations defined on whole structure are solved, successively. Also, the temperature and displacement fields are constructed as second-order multiscale approximate solutions by assembling the distinct local cell solutions and homogenized solutions. The main features of the proposed approach are: (i) an effective model reduction scheme for computing high-order nonlinear unit cell problems and (ii) an asymptotic high-order homogenization solution that does not need high-order continuity of the macroscale solutions. Further, the corresponding finite element-difference algorithms based on the SRAE approach are given in detail. Finally, by some typical numerical examples, the availability and correctness of the proposed algorithms are confirmed. The computational results clearly demonstrate that the SRAE approach reported in this work are efficient and valid to predict the macroscopic thermo-mechanical properties, and can catch the microscale information of the heterogenous materials accurately.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2019.06.021</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Asymptotic series ; Homogenization ; Mechanical properties ; Model reduction ; Multiscale analysis ; Nonlinear analysis ; Nonlinear equations ; Nonlinear periodic composites ; Reduced order homogenization ; SRAE algorithms ; Thermo-mechanical analysis ; Thermomechanical analysis ; Thermomechanical properties ; Unit cell</subject><ispartof>International journal of solids and structures, 2019-12, Vol.178-179, p.91-107</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-d78ed273a58a9582fc8129661005efaf39b5eab3b42060af173fe876ee2c6fb33</citedby><cites>FETCH-LOGICAL-c388t-d78ed273a58a9582fc8129661005efaf39b5eab3b42060af173fe876ee2c6fb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020768319302987$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Yang, Zhiqiang</creatorcontrib><creatorcontrib>Hao, Zhiwei</creatorcontrib><creatorcontrib>Sun, Yi</creatorcontrib><creatorcontrib>Liu, Yizhi</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><title>Thermo-mechanical analysis of nonlinear heterogeneous materials by second-order reduced asymptotic expansion approach</title><title>International journal of solids and structures</title><description>An effective second-order reduced asymptotic expansion (SRAE) approach is proposed to analyze the thermo-mechanical coupling problems of nonlinear periodic heterogeneous materials. The first-order and second-order nonlinear unit cell solutions at a microscale obtained by calculating the different multiscale cell functions are given at first. Then, the homogenization coefficients are evaluated, and the nonlinear homogenized equations defined on whole structure are solved, successively. Also, the temperature and displacement fields are constructed as second-order multiscale approximate solutions by assembling the distinct local cell solutions and homogenized solutions. The main features of the proposed approach are: (i) an effective model reduction scheme for computing high-order nonlinear unit cell problems and (ii) an asymptotic high-order homogenization solution that does not need high-order continuity of the macroscale solutions. Further, the corresponding finite element-difference algorithms based on the SRAE approach are given in detail. Finally, by some typical numerical examples, the availability and correctness of the proposed algorithms are confirmed. The computational results clearly demonstrate that the SRAE approach reported in this work are efficient and valid to predict the macroscopic thermo-mechanical properties, and can catch the microscale information of the heterogenous materials accurately.</description><subject>Algorithms</subject><subject>Asymptotic series</subject><subject>Homogenization</subject><subject>Mechanical properties</subject><subject>Model reduction</subject><subject>Multiscale analysis</subject><subject>Nonlinear analysis</subject><subject>Nonlinear equations</subject><subject>Nonlinear periodic composites</subject><subject>Reduced order homogenization</subject><subject>SRAE algorithms</subject><subject>Thermo-mechanical analysis</subject><subject>Thermomechanical analysis</subject><subject>Thermomechanical properties</subject><subject>Unit cell</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEGL1TAUhYMo-Bz9CxJw3XqTvJemO2XQcWBgNuM63KY3vpQ2qUkrvn9vhqdrV5cD55zL-Rh7L6AVIPTHqQ1TSXPZcitB9C3oFqR4wQ7CdH0jxVG_ZAcACU2njXrN3pQyAcBR9XBg-9OZ8pKahdwZY3A4c4w4X0ooPHkeU5xDJMz8TBvl9IMipb3wBasKOBc-XHghl-LYpDxS5pnG3dHIsVyWdUtbcJx-rxhLSJHjuuaE7vyWvfI1TO_-3hv2_euXp9tvzcPj3f3t54fGKWO2ZuwMjbJTeDLYn4z0zgjZay0ATuTRq344EQ5qOErQgF50ypPpNJF02g9K3bAP19769udOZbNT2nPdV6yUxujOGDDVpa8ul1Mpmbxdc1gwX6wA-4zYTvYfYvuM2IK2FXENfroGqW74FSjb4gLFOj9kcpsdU_hfxR-sdoxB</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Yang, Zhiqiang</creator><creator>Hao, Zhiwei</creator><creator>Sun, Yi</creator><creator>Liu, Yizhi</creator><creator>Dong, Hao</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20191201</creationdate><title>Thermo-mechanical analysis of nonlinear heterogeneous materials by second-order reduced asymptotic expansion approach</title><author>Yang, Zhiqiang ; Hao, Zhiwei ; Sun, Yi ; Liu, Yizhi ; Dong, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-d78ed273a58a9582fc8129661005efaf39b5eab3b42060af173fe876ee2c6fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Asymptotic series</topic><topic>Homogenization</topic><topic>Mechanical properties</topic><topic>Model reduction</topic><topic>Multiscale analysis</topic><topic>Nonlinear analysis</topic><topic>Nonlinear equations</topic><topic>Nonlinear periodic composites</topic><topic>Reduced order homogenization</topic><topic>SRAE algorithms</topic><topic>Thermo-mechanical analysis</topic><topic>Thermomechanical analysis</topic><topic>Thermomechanical properties</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Zhiqiang</creatorcontrib><creatorcontrib>Hao, Zhiwei</creatorcontrib><creatorcontrib>Sun, Yi</creatorcontrib><creatorcontrib>Liu, Yizhi</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Zhiqiang</au><au>Hao, Zhiwei</au><au>Sun, Yi</au><au>Liu, Yizhi</au><au>Dong, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-mechanical analysis of nonlinear heterogeneous materials by second-order reduced asymptotic expansion approach</atitle><jtitle>International journal of solids and structures</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>178-179</volume><spage>91</spage><epage>107</epage><pages>91-107</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>An effective second-order reduced asymptotic expansion (SRAE) approach is proposed to analyze the thermo-mechanical coupling problems of nonlinear periodic heterogeneous materials. The first-order and second-order nonlinear unit cell solutions at a microscale obtained by calculating the different multiscale cell functions are given at first. Then, the homogenization coefficients are evaluated, and the nonlinear homogenized equations defined on whole structure are solved, successively. Also, the temperature and displacement fields are constructed as second-order multiscale approximate solutions by assembling the distinct local cell solutions and homogenized solutions. The main features of the proposed approach are: (i) an effective model reduction scheme for computing high-order nonlinear unit cell problems and (ii) an asymptotic high-order homogenization solution that does not need high-order continuity of the macroscale solutions. Further, the corresponding finite element-difference algorithms based on the SRAE approach are given in detail. Finally, by some typical numerical examples, the availability and correctness of the proposed algorithms are confirmed. The computational results clearly demonstrate that the SRAE approach reported in this work are efficient and valid to predict the macroscopic thermo-mechanical properties, and can catch the microscale information of the heterogenous materials accurately.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2019.06.021</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2019-12, Vol.178-179, p.91-107
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_journals_2288678808
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Asymptotic series
Homogenization
Mechanical properties
Model reduction
Multiscale analysis
Nonlinear analysis
Nonlinear equations
Nonlinear periodic composites
Reduced order homogenization
SRAE algorithms
Thermo-mechanical analysis
Thermomechanical analysis
Thermomechanical properties
Unit cell
title Thermo-mechanical analysis of nonlinear heterogeneous materials by second-order reduced asymptotic expansion approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-mechanical%20analysis%20of%20nonlinear%20heterogeneous%20materials%20by%20second-order%20reduced%20asymptotic%20expansion%20approach&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Yang,%20Zhiqiang&rft.date=2019-12-01&rft.volume=178-179&rft.spage=91&rft.epage=107&rft.pages=91-107&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2019.06.021&rft_dat=%3Cproquest_cross%3E2288678808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288678808&rft_id=info:pmid/&rft_els_id=S0020768319302987&rfr_iscdi=true