Experimental Twin-Field Quantum Key Distribution through Sending or Not Sending
Channel loss seems to be the most severe limitation on the practical application of long distance quantum key distribution. The idea of twin-field quantum key distribution can improve the key rate from the linear scale of channel loss in the traditional decoy-state method to the square root scale of...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2019-09, Vol.123 (10), p.100505, Article 100505 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 100505 |
container_title | Physical review letters |
container_volume | 123 |
creator | Liu, Yang Yu, Zong-Wen Zhang, Weijun Guan, Jian-Yu Chen, Jiu-Peng Zhang, Chi Hu, Xiao-Long Li, Hao Jiang, Cong Lin, Jin Chen, Teng-Yun You, Lixing Wang, Zhen Wang, Xiang-Bin Zhang, Qiang Pan, Jian-Wei |
description | Channel loss seems to be the most severe limitation on the practical application of long distance quantum key distribution. The idea of twin-field quantum key distribution can improve the key rate from the linear scale of channel loss in the traditional decoy-state method to the square root scale of the channel transmittance. However, the technical demands are rather tough because they require single photon level interference of two remote independent lasers. Here, we adopt the technology developed in the frequency and time transfer to lock two independent laser wavelengths and utilize additional phase reference light to estimate and compensate the fiber fluctuation. Further, with a single photon detector with a high detection rate, we demonstrate twin field quantum key distribution through the sending-or-not-sending protocol with a realistic phase drift over 300 km optical fiber spools. We calculate the secure key rates with the finite size effect. The secure key rate at 300 km (1.96×10−6) is higher than that of the repeaterless secret key capacity (8.64×10−7). |
doi_str_mv | 10.1103/PhysRevLett.123.100505 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2288677535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288677535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-b5d1e0d2f5b935f207e92d263d636d064dd70cee60daa24471a5c905f7c531be3</originalsourceid><addsrcrecordid>eNpNkF1LwzAYhYMoOKd_QQJed75JmmS9lLlNcTg_5nVom7dbx9bMJFX3761MwavDgcM5nIeQSwYDxkBcP6324QU_ZhjjgHExYAAS5BHpMdBZohlLj0kPQLAkA9Cn5CyENQAwroY9Mh9_7dDXW2xivqGLz7pJJjVuLH1u8ya2W_qAe3pbh-jroo21a2hcedcuV_QVG1s3S-o8fXTxz56TkyrfBLz41T55m4wXo7tkNp_ej25mSSmEikkhLUOwvJJFJmTFQWPGLVfCKqEsqNRaDSWiApvnPE01y2WZgax0KQUrUPTJ1aF35917iyGatWt9000azodDpbUUskupQ6r0LgSPldl1X3O_NwzMDzzzD57p4JkDPPENhxFl7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288677535</pqid></control><display><type>article</type><title>Experimental Twin-Field Quantum Key Distribution through Sending or Not Sending</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Yang ; Yu, Zong-Wen ; Zhang, Weijun ; Guan, Jian-Yu ; Chen, Jiu-Peng ; Zhang, Chi ; Hu, Xiao-Long ; Li, Hao ; Jiang, Cong ; Lin, Jin ; Chen, Teng-Yun ; You, Lixing ; Wang, Zhen ; Wang, Xiang-Bin ; Zhang, Qiang ; Pan, Jian-Wei</creator><creatorcontrib>Liu, Yang ; Yu, Zong-Wen ; Zhang, Weijun ; Guan, Jian-Yu ; Chen, Jiu-Peng ; Zhang, Chi ; Hu, Xiao-Long ; Li, Hao ; Jiang, Cong ; Lin, Jin ; Chen, Teng-Yun ; You, Lixing ; Wang, Zhen ; Wang, Xiang-Bin ; Zhang, Qiang ; Pan, Jian-Wei</creatorcontrib><description>Channel loss seems to be the most severe limitation on the practical application of long distance quantum key distribution. The idea of twin-field quantum key distribution can improve the key rate from the linear scale of channel loss in the traditional decoy-state method to the square root scale of the channel transmittance. However, the technical demands are rather tough because they require single photon level interference of two remote independent lasers. Here, we adopt the technology developed in the frequency and time transfer to lock two independent laser wavelengths and utilize additional phase reference light to estimate and compensate the fiber fluctuation. Further, with a single photon detector with a high detection rate, we demonstrate twin field quantum key distribution through the sending-or-not-sending protocol with a realistic phase drift over 300 km optical fiber spools. We calculate the secure key rates with the finite size effect. The secure key rate at 300 km (1.96×10−6) is higher than that of the repeaterless secret key capacity (8.64×10−7).</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.123.100505</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Optical fibers ; Photons ; Quantum cryptography ; Size effects ; Spools ; Variations</subject><ispartof>Physical review letters, 2019-09, Vol.123 (10), p.100505, Article 100505</ispartof><rights>Copyright American Physical Society Sep 6, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-b5d1e0d2f5b935f207e92d263d636d064dd70cee60daa24471a5c905f7c531be3</citedby><cites>FETCH-LOGICAL-c336t-b5d1e0d2f5b935f207e92d263d636d064dd70cee60daa24471a5c905f7c531be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Yu, Zong-Wen</creatorcontrib><creatorcontrib>Zhang, Weijun</creatorcontrib><creatorcontrib>Guan, Jian-Yu</creatorcontrib><creatorcontrib>Chen, Jiu-Peng</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Hu, Xiao-Long</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Jiang, Cong</creatorcontrib><creatorcontrib>Lin, Jin</creatorcontrib><creatorcontrib>Chen, Teng-Yun</creatorcontrib><creatorcontrib>You, Lixing</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Wang, Xiang-Bin</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><title>Experimental Twin-Field Quantum Key Distribution through Sending or Not Sending</title><title>Physical review letters</title><description>Channel loss seems to be the most severe limitation on the practical application of long distance quantum key distribution. The idea of twin-field quantum key distribution can improve the key rate from the linear scale of channel loss in the traditional decoy-state method to the square root scale of the channel transmittance. However, the technical demands are rather tough because they require single photon level interference of two remote independent lasers. Here, we adopt the technology developed in the frequency and time transfer to lock two independent laser wavelengths and utilize additional phase reference light to estimate and compensate the fiber fluctuation. Further, with a single photon detector with a high detection rate, we demonstrate twin field quantum key distribution through the sending-or-not-sending protocol with a realistic phase drift over 300 km optical fiber spools. We calculate the secure key rates with the finite size effect. The secure key rate at 300 km (1.96×10−6) is higher than that of the repeaterless secret key capacity (8.64×10−7).</description><subject>Optical fibers</subject><subject>Photons</subject><subject>Quantum cryptography</subject><subject>Size effects</subject><subject>Spools</subject><subject>Variations</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAYhYMoOKd_QQJed75JmmS9lLlNcTg_5nVom7dbx9bMJFX3761MwavDgcM5nIeQSwYDxkBcP6324QU_ZhjjgHExYAAS5BHpMdBZohlLj0kPQLAkA9Cn5CyENQAwroY9Mh9_7dDXW2xivqGLz7pJJjVuLH1u8ya2W_qAe3pbh-jroo21a2hcedcuV_QVG1s3S-o8fXTxz56TkyrfBLz41T55m4wXo7tkNp_ej25mSSmEikkhLUOwvJJFJmTFQWPGLVfCKqEsqNRaDSWiApvnPE01y2WZgax0KQUrUPTJ1aF35917iyGatWt9000azodDpbUUskupQ6r0LgSPldl1X3O_NwzMDzzzD57p4JkDPPENhxFl7Q</recordid><startdate>20190905</startdate><enddate>20190905</enddate><creator>Liu, Yang</creator><creator>Yu, Zong-Wen</creator><creator>Zhang, Weijun</creator><creator>Guan, Jian-Yu</creator><creator>Chen, Jiu-Peng</creator><creator>Zhang, Chi</creator><creator>Hu, Xiao-Long</creator><creator>Li, Hao</creator><creator>Jiang, Cong</creator><creator>Lin, Jin</creator><creator>Chen, Teng-Yun</creator><creator>You, Lixing</creator><creator>Wang, Zhen</creator><creator>Wang, Xiang-Bin</creator><creator>Zhang, Qiang</creator><creator>Pan, Jian-Wei</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190905</creationdate><title>Experimental Twin-Field Quantum Key Distribution through Sending or Not Sending</title><author>Liu, Yang ; Yu, Zong-Wen ; Zhang, Weijun ; Guan, Jian-Yu ; Chen, Jiu-Peng ; Zhang, Chi ; Hu, Xiao-Long ; Li, Hao ; Jiang, Cong ; Lin, Jin ; Chen, Teng-Yun ; You, Lixing ; Wang, Zhen ; Wang, Xiang-Bin ; Zhang, Qiang ; Pan, Jian-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-b5d1e0d2f5b935f207e92d263d636d064dd70cee60daa24471a5c905f7c531be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Optical fibers</topic><topic>Photons</topic><topic>Quantum cryptography</topic><topic>Size effects</topic><topic>Spools</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Yu, Zong-Wen</creatorcontrib><creatorcontrib>Zhang, Weijun</creatorcontrib><creatorcontrib>Guan, Jian-Yu</creatorcontrib><creatorcontrib>Chen, Jiu-Peng</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Hu, Xiao-Long</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Jiang, Cong</creatorcontrib><creatorcontrib>Lin, Jin</creatorcontrib><creatorcontrib>Chen, Teng-Yun</creatorcontrib><creatorcontrib>You, Lixing</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Wang, Xiang-Bin</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yang</au><au>Yu, Zong-Wen</au><au>Zhang, Weijun</au><au>Guan, Jian-Yu</au><au>Chen, Jiu-Peng</au><au>Zhang, Chi</au><au>Hu, Xiao-Long</au><au>Li, Hao</au><au>Jiang, Cong</au><au>Lin, Jin</au><au>Chen, Teng-Yun</au><au>You, Lixing</au><au>Wang, Zhen</au><au>Wang, Xiang-Bin</au><au>Zhang, Qiang</au><au>Pan, Jian-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Twin-Field Quantum Key Distribution through Sending or Not Sending</atitle><jtitle>Physical review letters</jtitle><date>2019-09-05</date><risdate>2019</risdate><volume>123</volume><issue>10</issue><spage>100505</spage><pages>100505-</pages><artnum>100505</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Channel loss seems to be the most severe limitation on the practical application of long distance quantum key distribution. The idea of twin-field quantum key distribution can improve the key rate from the linear scale of channel loss in the traditional decoy-state method to the square root scale of the channel transmittance. However, the technical demands are rather tough because they require single photon level interference of two remote independent lasers. Here, we adopt the technology developed in the frequency and time transfer to lock two independent laser wavelengths and utilize additional phase reference light to estimate and compensate the fiber fluctuation. Further, with a single photon detector with a high detection rate, we demonstrate twin field quantum key distribution through the sending-or-not-sending protocol with a realistic phase drift over 300 km optical fiber spools. We calculate the secure key rates with the finite size effect. The secure key rate at 300 km (1.96×10−6) is higher than that of the repeaterless secret key capacity (8.64×10−7).</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.123.100505</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2019-09, Vol.123 (10), p.100505, Article 100505 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_journals_2288677535 |
source | American Physical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Optical fibers Photons Quantum cryptography Size effects Spools Variations |
title | Experimental Twin-Field Quantum Key Distribution through Sending or Not Sending |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Twin-Field%20Quantum%20Key%20Distribution%20through%20Sending%20or%20Not%20Sending&rft.jtitle=Physical%20review%20letters&rft.au=Liu,%20Yang&rft.date=2019-09-05&rft.volume=123&rft.issue=10&rft.spage=100505&rft.pages=100505-&rft.artnum=100505&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.123.100505&rft_dat=%3Cproquest_cross%3E2288677535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288677535&rft_id=info:pmid/&rfr_iscdi=true |