Experimental Twin-Field Quantum Key Distribution through Sending or Not Sending

Channel loss seems to be the most severe limitation on the practical application of long distance quantum key distribution. The idea of twin-field quantum key distribution can improve the key rate from the linear scale of channel loss in the traditional decoy-state method to the square root scale of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-09, Vol.123 (10), p.100505, Article 100505
Hauptverfasser: Liu, Yang, Yu, Zong-Wen, Zhang, Weijun, Guan, Jian-Yu, Chen, Jiu-Peng, Zhang, Chi, Hu, Xiao-Long, Li, Hao, Jiang, Cong, Lin, Jin, Chen, Teng-Yun, You, Lixing, Wang, Zhen, Wang, Xiang-Bin, Zhang, Qiang, Pan, Jian-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 100505
container_title Physical review letters
container_volume 123
creator Liu, Yang
Yu, Zong-Wen
Zhang, Weijun
Guan, Jian-Yu
Chen, Jiu-Peng
Zhang, Chi
Hu, Xiao-Long
Li, Hao
Jiang, Cong
Lin, Jin
Chen, Teng-Yun
You, Lixing
Wang, Zhen
Wang, Xiang-Bin
Zhang, Qiang
Pan, Jian-Wei
description Channel loss seems to be the most severe limitation on the practical application of long distance quantum key distribution. The idea of twin-field quantum key distribution can improve the key rate from the linear scale of channel loss in the traditional decoy-state method to the square root scale of the channel transmittance. However, the technical demands are rather tough because they require single photon level interference of two remote independent lasers. Here, we adopt the technology developed in the frequency and time transfer to lock two independent laser wavelengths and utilize additional phase reference light to estimate and compensate the fiber fluctuation. Further, with a single photon detector with a high detection rate, we demonstrate twin field quantum key distribution through the sending-or-not-sending protocol with a realistic phase drift over 300 km optical fiber spools. We calculate the secure key rates with the finite size effect. The secure key rate at 300 km (1.96×10−6) is higher than that of the repeaterless secret key capacity (8.64×10−7).
doi_str_mv 10.1103/PhysRevLett.123.100505
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2288677535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288677535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-b5d1e0d2f5b935f207e92d263d636d064dd70cee60daa24471a5c905f7c531be3</originalsourceid><addsrcrecordid>eNpNkF1LwzAYhYMoOKd_QQJed75JmmS9lLlNcTg_5nVom7dbx9bMJFX3761MwavDgcM5nIeQSwYDxkBcP6324QU_ZhjjgHExYAAS5BHpMdBZohlLj0kPQLAkA9Cn5CyENQAwroY9Mh9_7dDXW2xivqGLz7pJJjVuLH1u8ya2W_qAe3pbh-jroo21a2hcedcuV_QVG1s3S-o8fXTxz56TkyrfBLz41T55m4wXo7tkNp_ej25mSSmEikkhLUOwvJJFJmTFQWPGLVfCKqEsqNRaDSWiApvnPE01y2WZgax0KQUrUPTJ1aF35917iyGatWt9000azodDpbUUskupQ6r0LgSPldl1X3O_NwzMDzzzD57p4JkDPPENhxFl7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288677535</pqid></control><display><type>article</type><title>Experimental Twin-Field Quantum Key Distribution through Sending or Not Sending</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Yang ; Yu, Zong-Wen ; Zhang, Weijun ; Guan, Jian-Yu ; Chen, Jiu-Peng ; Zhang, Chi ; Hu, Xiao-Long ; Li, Hao ; Jiang, Cong ; Lin, Jin ; Chen, Teng-Yun ; You, Lixing ; Wang, Zhen ; Wang, Xiang-Bin ; Zhang, Qiang ; Pan, Jian-Wei</creator><creatorcontrib>Liu, Yang ; Yu, Zong-Wen ; Zhang, Weijun ; Guan, Jian-Yu ; Chen, Jiu-Peng ; Zhang, Chi ; Hu, Xiao-Long ; Li, Hao ; Jiang, Cong ; Lin, Jin ; Chen, Teng-Yun ; You, Lixing ; Wang, Zhen ; Wang, Xiang-Bin ; Zhang, Qiang ; Pan, Jian-Wei</creatorcontrib><description>Channel loss seems to be the most severe limitation on the practical application of long distance quantum key distribution. The idea of twin-field quantum key distribution can improve the key rate from the linear scale of channel loss in the traditional decoy-state method to the square root scale of the channel transmittance. However, the technical demands are rather tough because they require single photon level interference of two remote independent lasers. Here, we adopt the technology developed in the frequency and time transfer to lock two independent laser wavelengths and utilize additional phase reference light to estimate and compensate the fiber fluctuation. Further, with a single photon detector with a high detection rate, we demonstrate twin field quantum key distribution through the sending-or-not-sending protocol with a realistic phase drift over 300 km optical fiber spools. We calculate the secure key rates with the finite size effect. The secure key rate at 300 km (1.96×10−6) is higher than that of the repeaterless secret key capacity (8.64×10−7).</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.123.100505</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Optical fibers ; Photons ; Quantum cryptography ; Size effects ; Spools ; Variations</subject><ispartof>Physical review letters, 2019-09, Vol.123 (10), p.100505, Article 100505</ispartof><rights>Copyright American Physical Society Sep 6, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-b5d1e0d2f5b935f207e92d263d636d064dd70cee60daa24471a5c905f7c531be3</citedby><cites>FETCH-LOGICAL-c336t-b5d1e0d2f5b935f207e92d263d636d064dd70cee60daa24471a5c905f7c531be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Yu, Zong-Wen</creatorcontrib><creatorcontrib>Zhang, Weijun</creatorcontrib><creatorcontrib>Guan, Jian-Yu</creatorcontrib><creatorcontrib>Chen, Jiu-Peng</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Hu, Xiao-Long</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Jiang, Cong</creatorcontrib><creatorcontrib>Lin, Jin</creatorcontrib><creatorcontrib>Chen, Teng-Yun</creatorcontrib><creatorcontrib>You, Lixing</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Wang, Xiang-Bin</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><title>Experimental Twin-Field Quantum Key Distribution through Sending or Not Sending</title><title>Physical review letters</title><description>Channel loss seems to be the most severe limitation on the practical application of long distance quantum key distribution. The idea of twin-field quantum key distribution can improve the key rate from the linear scale of channel loss in the traditional decoy-state method to the square root scale of the channel transmittance. However, the technical demands are rather tough because they require single photon level interference of two remote independent lasers. Here, we adopt the technology developed in the frequency and time transfer to lock two independent laser wavelengths and utilize additional phase reference light to estimate and compensate the fiber fluctuation. Further, with a single photon detector with a high detection rate, we demonstrate twin field quantum key distribution through the sending-or-not-sending protocol with a realistic phase drift over 300 km optical fiber spools. We calculate the secure key rates with the finite size effect. The secure key rate at 300 km (1.96×10−6) is higher than that of the repeaterless secret key capacity (8.64×10−7).</description><subject>Optical fibers</subject><subject>Photons</subject><subject>Quantum cryptography</subject><subject>Size effects</subject><subject>Spools</subject><subject>Variations</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAYhYMoOKd_QQJed75JmmS9lLlNcTg_5nVom7dbx9bMJFX3761MwavDgcM5nIeQSwYDxkBcP6324QU_ZhjjgHExYAAS5BHpMdBZohlLj0kPQLAkA9Cn5CyENQAwroY9Mh9_7dDXW2xivqGLz7pJJjVuLH1u8ya2W_qAe3pbh-jroo21a2hcedcuV_QVG1s3S-o8fXTxz56TkyrfBLz41T55m4wXo7tkNp_ej25mSSmEikkhLUOwvJJFJmTFQWPGLVfCKqEsqNRaDSWiApvnPE01y2WZgax0KQUrUPTJ1aF35917iyGatWt9000azodDpbUUskupQ6r0LgSPldl1X3O_NwzMDzzzD57p4JkDPPENhxFl7Q</recordid><startdate>20190905</startdate><enddate>20190905</enddate><creator>Liu, Yang</creator><creator>Yu, Zong-Wen</creator><creator>Zhang, Weijun</creator><creator>Guan, Jian-Yu</creator><creator>Chen, Jiu-Peng</creator><creator>Zhang, Chi</creator><creator>Hu, Xiao-Long</creator><creator>Li, Hao</creator><creator>Jiang, Cong</creator><creator>Lin, Jin</creator><creator>Chen, Teng-Yun</creator><creator>You, Lixing</creator><creator>Wang, Zhen</creator><creator>Wang, Xiang-Bin</creator><creator>Zhang, Qiang</creator><creator>Pan, Jian-Wei</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190905</creationdate><title>Experimental Twin-Field Quantum Key Distribution through Sending or Not Sending</title><author>Liu, Yang ; Yu, Zong-Wen ; Zhang, Weijun ; Guan, Jian-Yu ; Chen, Jiu-Peng ; Zhang, Chi ; Hu, Xiao-Long ; Li, Hao ; Jiang, Cong ; Lin, Jin ; Chen, Teng-Yun ; You, Lixing ; Wang, Zhen ; Wang, Xiang-Bin ; Zhang, Qiang ; Pan, Jian-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-b5d1e0d2f5b935f207e92d263d636d064dd70cee60daa24471a5c905f7c531be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Optical fibers</topic><topic>Photons</topic><topic>Quantum cryptography</topic><topic>Size effects</topic><topic>Spools</topic><topic>Variations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Yu, Zong-Wen</creatorcontrib><creatorcontrib>Zhang, Weijun</creatorcontrib><creatorcontrib>Guan, Jian-Yu</creatorcontrib><creatorcontrib>Chen, Jiu-Peng</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Hu, Xiao-Long</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Jiang, Cong</creatorcontrib><creatorcontrib>Lin, Jin</creatorcontrib><creatorcontrib>Chen, Teng-Yun</creatorcontrib><creatorcontrib>You, Lixing</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Wang, Xiang-Bin</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Pan, Jian-Wei</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yang</au><au>Yu, Zong-Wen</au><au>Zhang, Weijun</au><au>Guan, Jian-Yu</au><au>Chen, Jiu-Peng</au><au>Zhang, Chi</au><au>Hu, Xiao-Long</au><au>Li, Hao</au><au>Jiang, Cong</au><au>Lin, Jin</au><au>Chen, Teng-Yun</au><au>You, Lixing</au><au>Wang, Zhen</au><au>Wang, Xiang-Bin</au><au>Zhang, Qiang</au><au>Pan, Jian-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Twin-Field Quantum Key Distribution through Sending or Not Sending</atitle><jtitle>Physical review letters</jtitle><date>2019-09-05</date><risdate>2019</risdate><volume>123</volume><issue>10</issue><spage>100505</spage><pages>100505-</pages><artnum>100505</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Channel loss seems to be the most severe limitation on the practical application of long distance quantum key distribution. The idea of twin-field quantum key distribution can improve the key rate from the linear scale of channel loss in the traditional decoy-state method to the square root scale of the channel transmittance. However, the technical demands are rather tough because they require single photon level interference of two remote independent lasers. Here, we adopt the technology developed in the frequency and time transfer to lock two independent laser wavelengths and utilize additional phase reference light to estimate and compensate the fiber fluctuation. Further, with a single photon detector with a high detection rate, we demonstrate twin field quantum key distribution through the sending-or-not-sending protocol with a realistic phase drift over 300 km optical fiber spools. We calculate the secure key rates with the finite size effect. The secure key rate at 300 km (1.96×10−6) is higher than that of the repeaterless secret key capacity (8.64×10−7).</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.123.100505</doi></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2019-09, Vol.123 (10), p.100505, Article 100505
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_journals_2288677535
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects Optical fibers
Photons
Quantum cryptography
Size effects
Spools
Variations
title Experimental Twin-Field Quantum Key Distribution through Sending or Not Sending
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Twin-Field%20Quantum%20Key%20Distribution%20through%20Sending%20or%20Not%20Sending&rft.jtitle=Physical%20review%20letters&rft.au=Liu,%20Yang&rft.date=2019-09-05&rft.volume=123&rft.issue=10&rft.spage=100505&rft.pages=100505-&rft.artnum=100505&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.123.100505&rft_dat=%3Cproquest_cross%3E2288677535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288677535&rft_id=info:pmid/&rfr_iscdi=true