Fatigue behavior of HPC and FRC under cyclic tensile loading: Experiments and modeling
Systematic investigations of hardened cement paste, high‐performance concrete and mortar with and without microfibers, subjected to static and cyclic tensile loadings, were conducted. The material degradation was investigated by means of microscopic analyses of the microcrack development. Notched sp...
Gespeichert in:
Veröffentlicht in: | Structural concrete : journal of the FIB 2019-08, Vol.20 (4), p.1265-1278 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1278 |
---|---|
container_issue | 4 |
container_start_page | 1265 |
container_title | Structural concrete : journal of the FIB |
container_volume | 20 |
creator | Schäfer, Niklas Gudžulić, Vladislav Timothy, Jithender J. Breitenbücher, Rolf Meschke, Günther |
description | Systematic investigations of hardened cement paste, high‐performance concrete and mortar with and without microfibers, subjected to static and cyclic tensile loadings, were conducted. The material degradation was investigated by means of microscopic analyses of the microcrack development. Notched specimens were subjected to a predefined number of load cycles. A nonsteady increase of microcracking with increasing load cycles was observed in high‐strength concrete, whereas the addition of steel fibers lead to a steady increase of microcracks. High‐strength mortar often showed premature failure, while addition of steel micro fibers allowed completion of the cyclic tests. To obtain a deeper insight into physical mechanisms governing fatigue and structural failure, high‐performance concrete (HPC) and fiber‐reinforced concrete (FRC) under static and cyclic tensile loadings have been modeled using cohesive interface finite elements, micromechanics, and a fiber‐bundle model. Analysis of model predictions shows the significance of strength disorder and fiber properties on the structural behavior. |
doi_str_mv | 10.1002/suco.201900056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2288649057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288649057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-b79510c9b4ceba2a50a73ff7a76c0ed7bb684e5bc6d29516952a361a7d34d9233</originalsourceid><addsrcrecordid>eNqFkM1LwzAYxoMoOKdXzwHPnUmaj9ablM0Jg4k6ryFN0tnRNTNp1f73Zk706Ol94P0978cDwCVGE4wQuQ69dhOCcI4QYvwIjLBgOBGcZsdRU04TioU4BWchbCIfNRuBl5nq6nVvYWlf1XvtPHQVnD8UULUGzh4L2LfGeqgH3dQadrYNdWNh45Sp2_UNnH7urK-3tu3Ct2PrjG1i5xycVKoJ9uKnjsFqNn0u5slieXdf3C4SnTLBk1LkDCOdl1TbUhHFkBJpVQkluEbWiLLkGbWs1NyQSPKcEZVyrIRJqclJmo7B1WHuzru33oZOblzv27hSEpJlnOaIiUhNDpT2LgRvK7mLRys_SIzkPju5z07-ZhcN-cHwEb8d_qHl06pY_nm_ALd5cpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288649057</pqid></control><display><type>article</type><title>Fatigue behavior of HPC and FRC under cyclic tensile loading: Experiments and modeling</title><source>Wiley Journals</source><creator>Schäfer, Niklas ; Gudžulić, Vladislav ; Timothy, Jithender J. ; Breitenbücher, Rolf ; Meschke, Günther</creator><creatorcontrib>Schäfer, Niklas ; Gudžulić, Vladislav ; Timothy, Jithender J. ; Breitenbücher, Rolf ; Meschke, Günther</creatorcontrib><description>Systematic investigations of hardened cement paste, high‐performance concrete and mortar with and without microfibers, subjected to static and cyclic tensile loadings, were conducted. The material degradation was investigated by means of microscopic analyses of the microcrack development. Notched specimens were subjected to a predefined number of load cycles. A nonsteady increase of microcracking with increasing load cycles was observed in high‐strength concrete, whereas the addition of steel fibers lead to a steady increase of microcracks. High‐strength mortar often showed premature failure, while addition of steel micro fibers allowed completion of the cyclic tests. To obtain a deeper insight into physical mechanisms governing fatigue and structural failure, high‐performance concrete (HPC) and fiber‐reinforced concrete (FRC) under static and cyclic tensile loadings have been modeled using cohesive interface finite elements, micromechanics, and a fiber‐bundle model. Analysis of model predictions shows the significance of strength disorder and fiber properties on the structural behavior.</description><identifier>ISSN: 1464-4177</identifier><identifier>EISSN: 1751-7648</identifier><identifier>DOI: 10.1002/suco.201900056</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH & Co. KGaA</publisher><subject>Cement paste ; Concrete ; Crack initiation ; Crack propagation ; cyclic loading ; Cyclic testing ; discrete crack model ; disorder ; Fatigue failure ; Fatigue tests ; Fiber reinforced concretes ; finite element method ; Fracture mechanics ; Microcracks ; Microfibers ; Micromechanics ; Mortars (material) ; Reinforcing steels ; Steel fibers ; steel micro fibers ; Structural failure</subject><ispartof>Structural concrete : journal of the FIB, 2019-08, Vol.20 (4), p.1265-1278</ispartof><rights>2019 The Authors. Structural Concrete published by John Wiley & Sons Ltd on behalf of International Federation for Structural Concrete</rights><rights>2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-b79510c9b4ceba2a50a73ff7a76c0ed7bb684e5bc6d29516952a361a7d34d9233</citedby><cites>FETCH-LOGICAL-c3576-b79510c9b4ceba2a50a73ff7a76c0ed7bb684e5bc6d29516952a361a7d34d9233</cites><orcidid>0000-0002-1975-6524 ; 0000-0003-2277-1327 ; 0000-0002-1901-4299 ; 0000-0003-0250-8804 ; 0000-0002-5067-464X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsuco.201900056$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsuco.201900056$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Schäfer, Niklas</creatorcontrib><creatorcontrib>Gudžulić, Vladislav</creatorcontrib><creatorcontrib>Timothy, Jithender J.</creatorcontrib><creatorcontrib>Breitenbücher, Rolf</creatorcontrib><creatorcontrib>Meschke, Günther</creatorcontrib><title>Fatigue behavior of HPC and FRC under cyclic tensile loading: Experiments and modeling</title><title>Structural concrete : journal of the FIB</title><description>Systematic investigations of hardened cement paste, high‐performance concrete and mortar with and without microfibers, subjected to static and cyclic tensile loadings, were conducted. The material degradation was investigated by means of microscopic analyses of the microcrack development. Notched specimens were subjected to a predefined number of load cycles. A nonsteady increase of microcracking with increasing load cycles was observed in high‐strength concrete, whereas the addition of steel fibers lead to a steady increase of microcracks. High‐strength mortar often showed premature failure, while addition of steel micro fibers allowed completion of the cyclic tests. To obtain a deeper insight into physical mechanisms governing fatigue and structural failure, high‐performance concrete (HPC) and fiber‐reinforced concrete (FRC) under static and cyclic tensile loadings have been modeled using cohesive interface finite elements, micromechanics, and a fiber‐bundle model. Analysis of model predictions shows the significance of strength disorder and fiber properties on the structural behavior.</description><subject>Cement paste</subject><subject>Concrete</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>cyclic loading</subject><subject>Cyclic testing</subject><subject>discrete crack model</subject><subject>disorder</subject><subject>Fatigue failure</subject><subject>Fatigue tests</subject><subject>Fiber reinforced concretes</subject><subject>finite element method</subject><subject>Fracture mechanics</subject><subject>Microcracks</subject><subject>Microfibers</subject><subject>Micromechanics</subject><subject>Mortars (material)</subject><subject>Reinforcing steels</subject><subject>Steel fibers</subject><subject>steel micro fibers</subject><subject>Structural failure</subject><issn>1464-4177</issn><issn>1751-7648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1LwzAYxoMoOKdXzwHPnUmaj9ablM0Jg4k6ryFN0tnRNTNp1f73Zk706Ol94P0978cDwCVGE4wQuQ69dhOCcI4QYvwIjLBgOBGcZsdRU04TioU4BWchbCIfNRuBl5nq6nVvYWlf1XvtPHQVnD8UULUGzh4L2LfGeqgH3dQadrYNdWNh45Sp2_UNnH7urK-3tu3Ct2PrjG1i5xycVKoJ9uKnjsFqNn0u5slieXdf3C4SnTLBk1LkDCOdl1TbUhHFkBJpVQkluEbWiLLkGbWs1NyQSPKcEZVyrIRJqclJmo7B1WHuzru33oZOblzv27hSEpJlnOaIiUhNDpT2LgRvK7mLRys_SIzkPju5z07-ZhcN-cHwEb8d_qHl06pY_nm_ALd5cpk</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Schäfer, Niklas</creator><creator>Gudžulić, Vladislav</creator><creator>Timothy, Jithender J.</creator><creator>Breitenbücher, Rolf</creator><creator>Meschke, Günther</creator><general>WILEY‐VCH Verlag GmbH & Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-1975-6524</orcidid><orcidid>https://orcid.org/0000-0003-2277-1327</orcidid><orcidid>https://orcid.org/0000-0002-1901-4299</orcidid><orcidid>https://orcid.org/0000-0003-0250-8804</orcidid><orcidid>https://orcid.org/0000-0002-5067-464X</orcidid></search><sort><creationdate>201908</creationdate><title>Fatigue behavior of HPC and FRC under cyclic tensile loading: Experiments and modeling</title><author>Schäfer, Niklas ; Gudžulić, Vladislav ; Timothy, Jithender J. ; Breitenbücher, Rolf ; Meschke, Günther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-b79510c9b4ceba2a50a73ff7a76c0ed7bb684e5bc6d29516952a361a7d34d9233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cement paste</topic><topic>Concrete</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>cyclic loading</topic><topic>Cyclic testing</topic><topic>discrete crack model</topic><topic>disorder</topic><topic>Fatigue failure</topic><topic>Fatigue tests</topic><topic>Fiber reinforced concretes</topic><topic>finite element method</topic><topic>Fracture mechanics</topic><topic>Microcracks</topic><topic>Microfibers</topic><topic>Micromechanics</topic><topic>Mortars (material)</topic><topic>Reinforcing steels</topic><topic>Steel fibers</topic><topic>steel micro fibers</topic><topic>Structural failure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schäfer, Niklas</creatorcontrib><creatorcontrib>Gudžulić, Vladislav</creatorcontrib><creatorcontrib>Timothy, Jithender J.</creatorcontrib><creatorcontrib>Breitenbücher, Rolf</creatorcontrib><creatorcontrib>Meschke, Günther</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Structural concrete : journal of the FIB</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schäfer, Niklas</au><au>Gudžulić, Vladislav</au><au>Timothy, Jithender J.</au><au>Breitenbücher, Rolf</au><au>Meschke, Günther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue behavior of HPC and FRC under cyclic tensile loading: Experiments and modeling</atitle><jtitle>Structural concrete : journal of the FIB</jtitle><date>2019-08</date><risdate>2019</risdate><volume>20</volume><issue>4</issue><spage>1265</spage><epage>1278</epage><pages>1265-1278</pages><issn>1464-4177</issn><eissn>1751-7648</eissn><abstract>Systematic investigations of hardened cement paste, high‐performance concrete and mortar with and without microfibers, subjected to static and cyclic tensile loadings, were conducted. The material degradation was investigated by means of microscopic analyses of the microcrack development. Notched specimens were subjected to a predefined number of load cycles. A nonsteady increase of microcracking with increasing load cycles was observed in high‐strength concrete, whereas the addition of steel fibers lead to a steady increase of microcracks. High‐strength mortar often showed premature failure, while addition of steel micro fibers allowed completion of the cyclic tests. To obtain a deeper insight into physical mechanisms governing fatigue and structural failure, high‐performance concrete (HPC) and fiber‐reinforced concrete (FRC) under static and cyclic tensile loadings have been modeled using cohesive interface finite elements, micromechanics, and a fiber‐bundle model. Analysis of model predictions shows the significance of strength disorder and fiber properties on the structural behavior.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH & Co. KGaA</pub><doi>10.1002/suco.201900056</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1975-6524</orcidid><orcidid>https://orcid.org/0000-0003-2277-1327</orcidid><orcidid>https://orcid.org/0000-0002-1901-4299</orcidid><orcidid>https://orcid.org/0000-0003-0250-8804</orcidid><orcidid>https://orcid.org/0000-0002-5067-464X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1464-4177 |
ispartof | Structural concrete : journal of the FIB, 2019-08, Vol.20 (4), p.1265-1278 |
issn | 1464-4177 1751-7648 |
language | eng |
recordid | cdi_proquest_journals_2288649057 |
source | Wiley Journals |
subjects | Cement paste Concrete Crack initiation Crack propagation cyclic loading Cyclic testing discrete crack model disorder Fatigue failure Fatigue tests Fiber reinforced concretes finite element method Fracture mechanics Microcracks Microfibers Micromechanics Mortars (material) Reinforcing steels Steel fibers steel micro fibers Structural failure |
title | Fatigue behavior of HPC and FRC under cyclic tensile loading: Experiments and modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A21%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20behavior%20of%20HPC%20and%20FRC%20under%20cyclic%20tensile%20loading:%20Experiments%20and%20modeling&rft.jtitle=Structural%20concrete%20:%20journal%20of%20the%20FIB&rft.au=Sch%C3%A4fer,%20Niklas&rft.date=2019-08&rft.volume=20&rft.issue=4&rft.spage=1265&rft.epage=1278&rft.pages=1265-1278&rft.issn=1464-4177&rft.eissn=1751-7648&rft_id=info:doi/10.1002/suco.201900056&rft_dat=%3Cproquest_cross%3E2288649057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288649057&rft_id=info:pmid/&rfr_iscdi=true |