The branching‐course model predictive control algorithm for maritime collision avoidance
This article presents a new algorithm for short‐term maritime collision avoidance (COLAV) named the branching‐course model predictive control (BC‐MPC) algorithm. The algorithm is designed to be robust with respect to noise on obstacle estimates, which is a significant source of disturbance when usin...
Gespeichert in:
Veröffentlicht in: | Journal of field robotics 2019-10, Vol.36 (7), p.1222-1249 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1249 |
---|---|
container_issue | 7 |
container_start_page | 1222 |
container_title | Journal of field robotics |
container_volume | 36 |
creator | Eriksen, Bjørn‐Olav H. Breivik, Morten Wilthil, Erik F. Flåten, Andreas L. Brekke, Edmund F. |
description | This article presents a new algorithm for short‐term maritime collision avoidance (COLAV) named the branching‐course model predictive control (BC‐MPC) algorithm. The algorithm is designed to be robust with respect to noise on obstacle estimates, which is a significant source of disturbance when using exteroceptive sensors such as, for example, radars for obstacle detection and tracking. Exteroceptive sensors do not require vessel‐to‐vessel communication, which enables COLAV toward vessels not equipped with, for example, automatic identification system transponders, in addition to increasing the robustness with respect to faulty information which may be provided by other vessels. The BC‐MPC algorithm is compliant with Rules 8, 13, and 17 of the International Regulations for Preventing Collisions at Sea (COLREGs), and favors maneuvers following Rules 14 and 15. Specifically, the algorithm can ignore the specific maneuvering regulations of Rules 14 and 15, which may be required in situations where Rule 17 revokes a stand‐on obligation. The algorithm is experimentally validated in several full‐scale experiments in the Trondheimsfjord in 2017 using a radar‐based system for obstacle detection and tracking. To complement the experimental results, we present simulations where the BC‐MPC algorithm is tested in more complex scenarios involving multiple obstacles and several simultaneously active COLREGs rules. The COLAV experiments and simulations show good performance. |
doi_str_mv | 10.1002/rob.21900 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2288349694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288349694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3320-78aed5bc7fdeae5902db23cc68dedbae4ef8ec697dbe5239a7e2797add7a913e3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFo69hJHC-h4k-qVAmVDRvLsSetqyQudlrUHUfgjJwElyB2rOZJ882bmYfQZULGCSF04l05pokg5AgNkizLR6nI-fGfzsQpOgthTUjKCpEN0OtiBbj0qtUr2y6_Pj612_oAuHEGarzxYKzu7A6wdm3nXY1VvXTedqsGV87jRkVtm0O7rm2wrsVq56yJfnCOTipVB7j4rUP0cn-3mD6OZvOHp-nNbKQZo2TECwUmKzWvDCjIBKGmpEzrvDBgSgUpVAXoXHBTQkaZUBwoF1wZw5VIGLAhuup9N969bSF0ch1_aONKSWlRsJiASCN13VPauxA8VHLjbTx_LxMiD9HJGJ38iS6yk559tzXs_wfl8_y2n_gGAMVz_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288349694</pqid></control><display><type>article</type><title>The branching‐course model predictive control algorithm for maritime collision avoidance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Eriksen, Bjørn‐Olav H. ; Breivik, Morten ; Wilthil, Erik F. ; Flåten, Andreas L. ; Brekke, Edmund F.</creator><creatorcontrib>Eriksen, Bjørn‐Olav H. ; Breivik, Morten ; Wilthil, Erik F. ; Flåten, Andreas L. ; Brekke, Edmund F.</creatorcontrib><description>This article presents a new algorithm for short‐term maritime collision avoidance (COLAV) named the branching‐course model predictive control (BC‐MPC) algorithm. The algorithm is designed to be robust with respect to noise on obstacle estimates, which is a significant source of disturbance when using exteroceptive sensors such as, for example, radars for obstacle detection and tracking. Exteroceptive sensors do not require vessel‐to‐vessel communication, which enables COLAV toward vessels not equipped with, for example, automatic identification system transponders, in addition to increasing the robustness with respect to faulty information which may be provided by other vessels. The BC‐MPC algorithm is compliant with Rules 8, 13, and 17 of the International Regulations for Preventing Collisions at Sea (COLREGs), and favors maneuvers following Rules 14 and 15. Specifically, the algorithm can ignore the specific maneuvering regulations of Rules 14 and 15, which may be required in situations where Rule 17 revokes a stand‐on obligation. The algorithm is experimentally validated in several full‐scale experiments in the Trondheimsfjord in 2017 using a radar‐based system for obstacle detection and tracking. To complement the experimental results, we present simulations where the BC‐MPC algorithm is tested in more complex scenarios involving multiple obstacles and several simultaneously active COLREGs rules. The COLAV experiments and simulations show good performance.</description><identifier>ISSN: 1556-4959</identifier><identifier>EISSN: 1556-4967</identifier><identifier>DOI: 10.1002/rob.21900</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Collision avoidance ; Computer simulation ; control ; Control algorithms ; Control theory ; International regulations ; Maneuvers ; marine robotics ; Obstacle avoidance ; planning ; Predictive control ; Regulations ; Sensors ; Tracking ; Transponders</subject><ispartof>Journal of field robotics, 2019-10, Vol.36 (7), p.1222-1249</ispartof><rights>2019 The Authors. Journal of Field Robotics published by Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3320-78aed5bc7fdeae5902db23cc68dedbae4ef8ec697dbe5239a7e2797add7a913e3</citedby><cites>FETCH-LOGICAL-c3320-78aed5bc7fdeae5902db23cc68dedbae4ef8ec697dbe5239a7e2797add7a913e3</cites><orcidid>0000-0001-8735-1687 ; 0000-0001-8491-5432 ; 0000-0002-0786-2549 ; 0000-0001-9893-0107 ; 0000-0002-0457-1850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frob.21900$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frob.21900$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Eriksen, Bjørn‐Olav H.</creatorcontrib><creatorcontrib>Breivik, Morten</creatorcontrib><creatorcontrib>Wilthil, Erik F.</creatorcontrib><creatorcontrib>Flåten, Andreas L.</creatorcontrib><creatorcontrib>Brekke, Edmund F.</creatorcontrib><title>The branching‐course model predictive control algorithm for maritime collision avoidance</title><title>Journal of field robotics</title><description>This article presents a new algorithm for short‐term maritime collision avoidance (COLAV) named the branching‐course model predictive control (BC‐MPC) algorithm. The algorithm is designed to be robust with respect to noise on obstacle estimates, which is a significant source of disturbance when using exteroceptive sensors such as, for example, radars for obstacle detection and tracking. Exteroceptive sensors do not require vessel‐to‐vessel communication, which enables COLAV toward vessels not equipped with, for example, automatic identification system transponders, in addition to increasing the robustness with respect to faulty information which may be provided by other vessels. The BC‐MPC algorithm is compliant with Rules 8, 13, and 17 of the International Regulations for Preventing Collisions at Sea (COLREGs), and favors maneuvers following Rules 14 and 15. Specifically, the algorithm can ignore the specific maneuvering regulations of Rules 14 and 15, which may be required in situations where Rule 17 revokes a stand‐on obligation. The algorithm is experimentally validated in several full‐scale experiments in the Trondheimsfjord in 2017 using a radar‐based system for obstacle detection and tracking. To complement the experimental results, we present simulations where the BC‐MPC algorithm is tested in more complex scenarios involving multiple obstacles and several simultaneously active COLREGs rules. The COLAV experiments and simulations show good performance.</description><subject>Algorithms</subject><subject>Collision avoidance</subject><subject>Computer simulation</subject><subject>control</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>International regulations</subject><subject>Maneuvers</subject><subject>marine robotics</subject><subject>Obstacle avoidance</subject><subject>planning</subject><subject>Predictive control</subject><subject>Regulations</subject><subject>Sensors</subject><subject>Tracking</subject><subject>Transponders</subject><issn>1556-4959</issn><issn>1556-4967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFo69hJHC-h4k-qVAmVDRvLsSetqyQudlrUHUfgjJwElyB2rOZJ882bmYfQZULGCSF04l05pokg5AgNkizLR6nI-fGfzsQpOgthTUjKCpEN0OtiBbj0qtUr2y6_Pj612_oAuHEGarzxYKzu7A6wdm3nXY1VvXTedqsGV87jRkVtm0O7rm2wrsVq56yJfnCOTipVB7j4rUP0cn-3mD6OZvOHp-nNbKQZo2TECwUmKzWvDCjIBKGmpEzrvDBgSgUpVAXoXHBTQkaZUBwoF1wZw5VIGLAhuup9N969bSF0ch1_aONKSWlRsJiASCN13VPauxA8VHLjbTx_LxMiD9HJGJ38iS6yk559tzXs_wfl8_y2n_gGAMVz_Q</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Eriksen, Bjørn‐Olav H.</creator><creator>Breivik, Morten</creator><creator>Wilthil, Erik F.</creator><creator>Flåten, Andreas L.</creator><creator>Brekke, Edmund F.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8735-1687</orcidid><orcidid>https://orcid.org/0000-0001-8491-5432</orcidid><orcidid>https://orcid.org/0000-0002-0786-2549</orcidid><orcidid>https://orcid.org/0000-0001-9893-0107</orcidid><orcidid>https://orcid.org/0000-0002-0457-1850</orcidid></search><sort><creationdate>201910</creationdate><title>The branching‐course model predictive control algorithm for maritime collision avoidance</title><author>Eriksen, Bjørn‐Olav H. ; Breivik, Morten ; Wilthil, Erik F. ; Flåten, Andreas L. ; Brekke, Edmund F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3320-78aed5bc7fdeae5902db23cc68dedbae4ef8ec697dbe5239a7e2797add7a913e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Collision avoidance</topic><topic>Computer simulation</topic><topic>control</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>International regulations</topic><topic>Maneuvers</topic><topic>marine robotics</topic><topic>Obstacle avoidance</topic><topic>planning</topic><topic>Predictive control</topic><topic>Regulations</topic><topic>Sensors</topic><topic>Tracking</topic><topic>Transponders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eriksen, Bjørn‐Olav H.</creatorcontrib><creatorcontrib>Breivik, Morten</creatorcontrib><creatorcontrib>Wilthil, Erik F.</creatorcontrib><creatorcontrib>Flåten, Andreas L.</creatorcontrib><creatorcontrib>Brekke, Edmund F.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of field robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eriksen, Bjørn‐Olav H.</au><au>Breivik, Morten</au><au>Wilthil, Erik F.</au><au>Flåten, Andreas L.</au><au>Brekke, Edmund F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The branching‐course model predictive control algorithm for maritime collision avoidance</atitle><jtitle>Journal of field robotics</jtitle><date>2019-10</date><risdate>2019</risdate><volume>36</volume><issue>7</issue><spage>1222</spage><epage>1249</epage><pages>1222-1249</pages><issn>1556-4959</issn><eissn>1556-4967</eissn><abstract>This article presents a new algorithm for short‐term maritime collision avoidance (COLAV) named the branching‐course model predictive control (BC‐MPC) algorithm. The algorithm is designed to be robust with respect to noise on obstacle estimates, which is a significant source of disturbance when using exteroceptive sensors such as, for example, radars for obstacle detection and tracking. Exteroceptive sensors do not require vessel‐to‐vessel communication, which enables COLAV toward vessels not equipped with, for example, automatic identification system transponders, in addition to increasing the robustness with respect to faulty information which may be provided by other vessels. The BC‐MPC algorithm is compliant with Rules 8, 13, and 17 of the International Regulations for Preventing Collisions at Sea (COLREGs), and favors maneuvers following Rules 14 and 15. Specifically, the algorithm can ignore the specific maneuvering regulations of Rules 14 and 15, which may be required in situations where Rule 17 revokes a stand‐on obligation. The algorithm is experimentally validated in several full‐scale experiments in the Trondheimsfjord in 2017 using a radar‐based system for obstacle detection and tracking. To complement the experimental results, we present simulations where the BC‐MPC algorithm is tested in more complex scenarios involving multiple obstacles and several simultaneously active COLREGs rules. The COLAV experiments and simulations show good performance.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rob.21900</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-8735-1687</orcidid><orcidid>https://orcid.org/0000-0001-8491-5432</orcidid><orcidid>https://orcid.org/0000-0002-0786-2549</orcidid><orcidid>https://orcid.org/0000-0001-9893-0107</orcidid><orcidid>https://orcid.org/0000-0002-0457-1850</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1556-4959 |
ispartof | Journal of field robotics, 2019-10, Vol.36 (7), p.1222-1249 |
issn | 1556-4959 1556-4967 |
language | eng |
recordid | cdi_proquest_journals_2288349694 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Collision avoidance Computer simulation control Control algorithms Control theory International regulations Maneuvers marine robotics Obstacle avoidance planning Predictive control Regulations Sensors Tracking Transponders |
title | The branching‐course model predictive control algorithm for maritime collision avoidance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20branching%E2%80%90course%20model%20predictive%20control%20algorithm%20for%20maritime%20collision%20avoidance&rft.jtitle=Journal%20of%20field%20robotics&rft.au=Eriksen,%20Bj%C3%B8rn%E2%80%90Olav%20H.&rft.date=2019-10&rft.volume=36&rft.issue=7&rft.spage=1222&rft.epage=1249&rft.pages=1222-1249&rft.issn=1556-4959&rft.eissn=1556-4967&rft_id=info:doi/10.1002/rob.21900&rft_dat=%3Cproquest_cross%3E2288349694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288349694&rft_id=info:pmid/&rfr_iscdi=true |