The branching‐course model predictive control algorithm for maritime collision avoidance

This article presents a new algorithm for short‐term maritime collision avoidance (COLAV) named the branching‐course model predictive control (BC‐MPC) algorithm. The algorithm is designed to be robust with respect to noise on obstacle estimates, which is a significant source of disturbance when usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of field robotics 2019-10, Vol.36 (7), p.1222-1249
Hauptverfasser: Eriksen, Bjørn‐Olav H., Breivik, Morten, Wilthil, Erik F., Flåten, Andreas L., Brekke, Edmund F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1249
container_issue 7
container_start_page 1222
container_title Journal of field robotics
container_volume 36
creator Eriksen, Bjørn‐Olav H.
Breivik, Morten
Wilthil, Erik F.
Flåten, Andreas L.
Brekke, Edmund F.
description This article presents a new algorithm for short‐term maritime collision avoidance (COLAV) named the branching‐course model predictive control (BC‐MPC) algorithm. The algorithm is designed to be robust with respect to noise on obstacle estimates, which is a significant source of disturbance when using exteroceptive sensors such as, for example, radars for obstacle detection and tracking. Exteroceptive sensors do not require vessel‐to‐vessel communication, which enables COLAV toward vessels not equipped with, for example, automatic identification system transponders, in addition to increasing the robustness with respect to faulty information which may be provided by other vessels. The BC‐MPC algorithm is compliant with Rules 8, 13, and 17 of the International Regulations for Preventing Collisions at Sea (COLREGs), and favors maneuvers following Rules 14 and 15. Specifically, the algorithm can ignore the specific maneuvering regulations of Rules 14 and 15, which may be required in situations where Rule 17 revokes a stand‐on obligation. The algorithm is experimentally validated in several full‐scale experiments in the Trondheimsfjord in 2017 using a radar‐based system for obstacle detection and tracking. To complement the experimental results, we present simulations where the BC‐MPC algorithm is tested in more complex scenarios involving multiple obstacles and several simultaneously active COLREGs rules. The COLAV experiments and simulations show good performance.
doi_str_mv 10.1002/rob.21900
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2288349694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288349694</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3320-78aed5bc7fdeae5902db23cc68dedbae4ef8ec697dbe5239a7e2797add7a913e3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFo69hJHC-h4k-qVAmVDRvLsSetqyQudlrUHUfgjJwElyB2rOZJ882bmYfQZULGCSF04l05pokg5AgNkizLR6nI-fGfzsQpOgthTUjKCpEN0OtiBbj0qtUr2y6_Pj612_oAuHEGarzxYKzu7A6wdm3nXY1VvXTedqsGV87jRkVtm0O7rm2wrsVq56yJfnCOTipVB7j4rUP0cn-3mD6OZvOHp-nNbKQZo2TECwUmKzWvDCjIBKGmpEzrvDBgSgUpVAXoXHBTQkaZUBwoF1wZw5VIGLAhuup9N969bSF0ch1_aONKSWlRsJiASCN13VPauxA8VHLjbTx_LxMiD9HJGJ38iS6yk559tzXs_wfl8_y2n_gGAMVz_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288349694</pqid></control><display><type>article</type><title>The branching‐course model predictive control algorithm for maritime collision avoidance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Eriksen, Bjørn‐Olav H. ; Breivik, Morten ; Wilthil, Erik F. ; Flåten, Andreas L. ; Brekke, Edmund F.</creator><creatorcontrib>Eriksen, Bjørn‐Olav H. ; Breivik, Morten ; Wilthil, Erik F. ; Flåten, Andreas L. ; Brekke, Edmund F.</creatorcontrib><description>This article presents a new algorithm for short‐term maritime collision avoidance (COLAV) named the branching‐course model predictive control (BC‐MPC) algorithm. The algorithm is designed to be robust with respect to noise on obstacle estimates, which is a significant source of disturbance when using exteroceptive sensors such as, for example, radars for obstacle detection and tracking. Exteroceptive sensors do not require vessel‐to‐vessel communication, which enables COLAV toward vessels not equipped with, for example, automatic identification system transponders, in addition to increasing the robustness with respect to faulty information which may be provided by other vessels. The BC‐MPC algorithm is compliant with Rules 8, 13, and 17 of the International Regulations for Preventing Collisions at Sea (COLREGs), and favors maneuvers following Rules 14 and 15. Specifically, the algorithm can ignore the specific maneuvering regulations of Rules 14 and 15, which may be required in situations where Rule 17 revokes a stand‐on obligation. The algorithm is experimentally validated in several full‐scale experiments in the Trondheimsfjord in 2017 using a radar‐based system for obstacle detection and tracking. To complement the experimental results, we present simulations where the BC‐MPC algorithm is tested in more complex scenarios involving multiple obstacles and several simultaneously active COLREGs rules. The COLAV experiments and simulations show good performance.</description><identifier>ISSN: 1556-4959</identifier><identifier>EISSN: 1556-4967</identifier><identifier>DOI: 10.1002/rob.21900</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Collision avoidance ; Computer simulation ; control ; Control algorithms ; Control theory ; International regulations ; Maneuvers ; marine robotics ; Obstacle avoidance ; planning ; Predictive control ; Regulations ; Sensors ; Tracking ; Transponders</subject><ispartof>Journal of field robotics, 2019-10, Vol.36 (7), p.1222-1249</ispartof><rights>2019 The Authors. Journal of Field Robotics published by Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3320-78aed5bc7fdeae5902db23cc68dedbae4ef8ec697dbe5239a7e2797add7a913e3</citedby><cites>FETCH-LOGICAL-c3320-78aed5bc7fdeae5902db23cc68dedbae4ef8ec697dbe5239a7e2797add7a913e3</cites><orcidid>0000-0001-8735-1687 ; 0000-0001-8491-5432 ; 0000-0002-0786-2549 ; 0000-0001-9893-0107 ; 0000-0002-0457-1850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frob.21900$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frob.21900$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Eriksen, Bjørn‐Olav H.</creatorcontrib><creatorcontrib>Breivik, Morten</creatorcontrib><creatorcontrib>Wilthil, Erik F.</creatorcontrib><creatorcontrib>Flåten, Andreas L.</creatorcontrib><creatorcontrib>Brekke, Edmund F.</creatorcontrib><title>The branching‐course model predictive control algorithm for maritime collision avoidance</title><title>Journal of field robotics</title><description>This article presents a new algorithm for short‐term maritime collision avoidance (COLAV) named the branching‐course model predictive control (BC‐MPC) algorithm. The algorithm is designed to be robust with respect to noise on obstacle estimates, which is a significant source of disturbance when using exteroceptive sensors such as, for example, radars for obstacle detection and tracking. Exteroceptive sensors do not require vessel‐to‐vessel communication, which enables COLAV toward vessels not equipped with, for example, automatic identification system transponders, in addition to increasing the robustness with respect to faulty information which may be provided by other vessels. The BC‐MPC algorithm is compliant with Rules 8, 13, and 17 of the International Regulations for Preventing Collisions at Sea (COLREGs), and favors maneuvers following Rules 14 and 15. Specifically, the algorithm can ignore the specific maneuvering regulations of Rules 14 and 15, which may be required in situations where Rule 17 revokes a stand‐on obligation. The algorithm is experimentally validated in several full‐scale experiments in the Trondheimsfjord in 2017 using a radar‐based system for obstacle detection and tracking. To complement the experimental results, we present simulations where the BC‐MPC algorithm is tested in more complex scenarios involving multiple obstacles and several simultaneously active COLREGs rules. The COLAV experiments and simulations show good performance.</description><subject>Algorithms</subject><subject>Collision avoidance</subject><subject>Computer simulation</subject><subject>control</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>International regulations</subject><subject>Maneuvers</subject><subject>marine robotics</subject><subject>Obstacle avoidance</subject><subject>planning</subject><subject>Predictive control</subject><subject>Regulations</subject><subject>Sensors</subject><subject>Tracking</subject><subject>Transponders</subject><issn>1556-4959</issn><issn>1556-4967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kE1OwzAQhS0EEqWw4AaWWLFo69hJHC-h4k-qVAmVDRvLsSetqyQudlrUHUfgjJwElyB2rOZJ882bmYfQZULGCSF04l05pokg5AgNkizLR6nI-fGfzsQpOgthTUjKCpEN0OtiBbj0qtUr2y6_Pj612_oAuHEGarzxYKzu7A6wdm3nXY1VvXTedqsGV87jRkVtm0O7rm2wrsVq56yJfnCOTipVB7j4rUP0cn-3mD6OZvOHp-nNbKQZo2TECwUmKzWvDCjIBKGmpEzrvDBgSgUpVAXoXHBTQkaZUBwoF1wZw5VIGLAhuup9N969bSF0ch1_aONKSWlRsJiASCN13VPauxA8VHLjbTx_LxMiD9HJGJ38iS6yk559tzXs_wfl8_y2n_gGAMVz_Q</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Eriksen, Bjørn‐Olav H.</creator><creator>Breivik, Morten</creator><creator>Wilthil, Erik F.</creator><creator>Flåten, Andreas L.</creator><creator>Brekke, Edmund F.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8735-1687</orcidid><orcidid>https://orcid.org/0000-0001-8491-5432</orcidid><orcidid>https://orcid.org/0000-0002-0786-2549</orcidid><orcidid>https://orcid.org/0000-0001-9893-0107</orcidid><orcidid>https://orcid.org/0000-0002-0457-1850</orcidid></search><sort><creationdate>201910</creationdate><title>The branching‐course model predictive control algorithm for maritime collision avoidance</title><author>Eriksen, Bjørn‐Olav H. ; Breivik, Morten ; Wilthil, Erik F. ; Flåten, Andreas L. ; Brekke, Edmund F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3320-78aed5bc7fdeae5902db23cc68dedbae4ef8ec697dbe5239a7e2797add7a913e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Collision avoidance</topic><topic>Computer simulation</topic><topic>control</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>International regulations</topic><topic>Maneuvers</topic><topic>marine robotics</topic><topic>Obstacle avoidance</topic><topic>planning</topic><topic>Predictive control</topic><topic>Regulations</topic><topic>Sensors</topic><topic>Tracking</topic><topic>Transponders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eriksen, Bjørn‐Olav H.</creatorcontrib><creatorcontrib>Breivik, Morten</creatorcontrib><creatorcontrib>Wilthil, Erik F.</creatorcontrib><creatorcontrib>Flåten, Andreas L.</creatorcontrib><creatorcontrib>Brekke, Edmund F.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of field robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eriksen, Bjørn‐Olav H.</au><au>Breivik, Morten</au><au>Wilthil, Erik F.</au><au>Flåten, Andreas L.</au><au>Brekke, Edmund F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The branching‐course model predictive control algorithm for maritime collision avoidance</atitle><jtitle>Journal of field robotics</jtitle><date>2019-10</date><risdate>2019</risdate><volume>36</volume><issue>7</issue><spage>1222</spage><epage>1249</epage><pages>1222-1249</pages><issn>1556-4959</issn><eissn>1556-4967</eissn><abstract>This article presents a new algorithm for short‐term maritime collision avoidance (COLAV) named the branching‐course model predictive control (BC‐MPC) algorithm. The algorithm is designed to be robust with respect to noise on obstacle estimates, which is a significant source of disturbance when using exteroceptive sensors such as, for example, radars for obstacle detection and tracking. Exteroceptive sensors do not require vessel‐to‐vessel communication, which enables COLAV toward vessels not equipped with, for example, automatic identification system transponders, in addition to increasing the robustness with respect to faulty information which may be provided by other vessels. The BC‐MPC algorithm is compliant with Rules 8, 13, and 17 of the International Regulations for Preventing Collisions at Sea (COLREGs), and favors maneuvers following Rules 14 and 15. Specifically, the algorithm can ignore the specific maneuvering regulations of Rules 14 and 15, which may be required in situations where Rule 17 revokes a stand‐on obligation. The algorithm is experimentally validated in several full‐scale experiments in the Trondheimsfjord in 2017 using a radar‐based system for obstacle detection and tracking. To complement the experimental results, we present simulations where the BC‐MPC algorithm is tested in more complex scenarios involving multiple obstacles and several simultaneously active COLREGs rules. The COLAV experiments and simulations show good performance.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rob.21900</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-8735-1687</orcidid><orcidid>https://orcid.org/0000-0001-8491-5432</orcidid><orcidid>https://orcid.org/0000-0002-0786-2549</orcidid><orcidid>https://orcid.org/0000-0001-9893-0107</orcidid><orcidid>https://orcid.org/0000-0002-0457-1850</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1556-4959
ispartof Journal of field robotics, 2019-10, Vol.36 (7), p.1222-1249
issn 1556-4959
1556-4967
language eng
recordid cdi_proquest_journals_2288349694
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Collision avoidance
Computer simulation
control
Control algorithms
Control theory
International regulations
Maneuvers
marine robotics
Obstacle avoidance
planning
Predictive control
Regulations
Sensors
Tracking
Transponders
title The branching‐course model predictive control algorithm for maritime collision avoidance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20branching%E2%80%90course%20model%20predictive%20control%20algorithm%20for%20maritime%20collision%20avoidance&rft.jtitle=Journal%20of%20field%20robotics&rft.au=Eriksen,%20Bj%C3%B8rn%E2%80%90Olav%20H.&rft.date=2019-10&rft.volume=36&rft.issue=7&rft.spage=1222&rft.epage=1249&rft.pages=1222-1249&rft.issn=1556-4959&rft.eissn=1556-4967&rft_id=info:doi/10.1002/rob.21900&rft_dat=%3Cproquest_cross%3E2288349694%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288349694&rft_id=info:pmid/&rfr_iscdi=true