3D Printed Loading Device for Inducing Cellular Mechanotransduction via Matrix Deformation

This manuscript details the design, fabrication, characterization, and application of a 3D printed loading device for the investigation of cellular mechanotransduction pathways activated by matrix deformation. The device, which works as a screw jack, applies out-of-plane substrate distention to a th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental mechanics 2019-10, Vol.59 (8), p.1223-1232
Hauptverfasser: Truesdell, S. L., George, E. L., Seno, C. E., Saunders, M. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1232
container_issue 8
container_start_page 1223
container_title Experimental mechanics
container_volume 59
creator Truesdell, S. L.
George, E. L.
Seno, C. E.
Saunders, M. M.
description This manuscript details the design, fabrication, characterization, and application of a 3D printed loading device for the investigation of cellular mechanotransduction pathways activated by matrix deformation. The device, which works as a screw jack, applies out-of-plane substrate distention to a thin polymer membrane via platen displacement. Load induces a strain gradient on the top surface of the membrane where cells are cultured. A high performance poly-lactic acid 3D filament was used for printing, resulting in a compact, cost-effective device that is fully autoclavable and compatible with standard laboratory incubators. The device was customized to accommodate a loadable polydimethylsiloxane chip developed in our lab for culturing MLO-Y4 osteocytes; however, the design can be easily adapted to load any mechanosensitive cells grown on an elastomeric membrane. Using finite element analysis, we demonstrated that the device can generate a range of strains to induce a variety of responses by the osteocytes. Cell viability data demonstrated that these ranges had the ability to engender load-induced apoptotic differences.
doi_str_mv 10.1007/s11340-019-00531-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2288054466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288054466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-484b2363e4594d5047d91db7a756c7e5c98728b55dcd633e64dcd280efcd57fe3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ747WSJWh6VUsECNmws13aKq9QpdlLB3-MSJHasZjRzz53RBeASo2uMkLxJGFOGCoSrAiFOcYGPwARLhgsiBT8GE4QwK1jJ8Sk4S2mDMkQlmYA3OofP0YfeWVh32vqwhnO398bBpotwEexgDrOZa9uh1REunXnXoeujDinvet8FuPcaLnUf_WdmM7bVh_E5OGl0m9zFb52C1_u7l9ljUT89LGa3dWFoSfr8FFsRKqhjvGKWIyZthe1KasmFkY6bqpSkXHFujRWUOsFyQ0rkGmO5bBydgqvRdxe7j8GlXm26IYZ8UhFSlogzJkRWkVFlYpdSdI3aRb_V8UthpA4ZqjFDlTNUPxkqnCE6QimLw9rFP-t_qG-j_nQz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288054466</pqid></control><display><type>article</type><title>3D Printed Loading Device for Inducing Cellular Mechanotransduction via Matrix Deformation</title><source>SpringerLink Journals</source><creator>Truesdell, S. L. ; George, E. L. ; Seno, C. E. ; Saunders, M. M.</creator><creatorcontrib>Truesdell, S. L. ; George, E. L. ; Seno, C. E. ; Saunders, M. M.</creatorcontrib><description>This manuscript details the design, fabrication, characterization, and application of a 3D printed loading device for the investigation of cellular mechanotransduction pathways activated by matrix deformation. The device, which works as a screw jack, applies out-of-plane substrate distention to a thin polymer membrane via platen displacement. Load induces a strain gradient on the top surface of the membrane where cells are cultured. A high performance poly-lactic acid 3D filament was used for printing, resulting in a compact, cost-effective device that is fully autoclavable and compatible with standard laboratory incubators. The device was customized to accommodate a loadable polydimethylsiloxane chip developed in our lab for culturing MLO-Y4 osteocytes; however, the design can be easily adapted to load any mechanosensitive cells grown on an elastomeric membrane. Using finite element analysis, we demonstrated that the device can generate a range of strains to induce a variety of responses by the osteocytes. Cell viability data demonstrated that these ranges had the ability to engender load-induced apoptotic differences.</description><identifier>ISSN: 0014-4851</identifier><identifier>EISSN: 1741-2765</identifier><identifier>DOI: 10.1007/s11340-019-00531-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Autoclaving ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Characterization and Evaluation of Materials ; Control ; Deformation ; Dynamical Systems ; Elastomers ; Engineering ; Finite element method ; Lactic acid ; Lasers ; Optical Devices ; Optics ; Photonics ; Polydimethylsiloxane ; Solid Mechanics ; Substrates ; Three dimensional printing ; Vibration</subject><ispartof>Experimental mechanics, 2019-10, Vol.59 (8), p.1223-1232</ispartof><rights>Society for Experimental Mechanics 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-484b2363e4594d5047d91db7a756c7e5c98728b55dcd633e64dcd280efcd57fe3</citedby><cites>FETCH-LOGICAL-c382t-484b2363e4594d5047d91db7a756c7e5c98728b55dcd633e64dcd280efcd57fe3</cites><orcidid>0000-0001-7506-2335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11340-019-00531-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11340-019-00531-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Truesdell, S. L.</creatorcontrib><creatorcontrib>George, E. L.</creatorcontrib><creatorcontrib>Seno, C. E.</creatorcontrib><creatorcontrib>Saunders, M. M.</creatorcontrib><title>3D Printed Loading Device for Inducing Cellular Mechanotransduction via Matrix Deformation</title><title>Experimental mechanics</title><addtitle>Exp Mech</addtitle><description>This manuscript details the design, fabrication, characterization, and application of a 3D printed loading device for the investigation of cellular mechanotransduction pathways activated by matrix deformation. The device, which works as a screw jack, applies out-of-plane substrate distention to a thin polymer membrane via platen displacement. Load induces a strain gradient on the top surface of the membrane where cells are cultured. A high performance poly-lactic acid 3D filament was used for printing, resulting in a compact, cost-effective device that is fully autoclavable and compatible with standard laboratory incubators. The device was customized to accommodate a loadable polydimethylsiloxane chip developed in our lab for culturing MLO-Y4 osteocytes; however, the design can be easily adapted to load any mechanosensitive cells grown on an elastomeric membrane. Using finite element analysis, we demonstrated that the device can generate a range of strains to induce a variety of responses by the osteocytes. Cell viability data demonstrated that these ranges had the ability to engender load-induced apoptotic differences.</description><subject>Autoclaving</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Characterization and Evaluation of Materials</subject><subject>Control</subject><subject>Deformation</subject><subject>Dynamical Systems</subject><subject>Elastomers</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Lactic acid</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Polydimethylsiloxane</subject><subject>Solid Mechanics</subject><subject>Substrates</subject><subject>Three dimensional printing</subject><subject>Vibration</subject><issn>0014-4851</issn><issn>1741-2765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ747WSJWh6VUsECNmws13aKq9QpdlLB3-MSJHasZjRzz53RBeASo2uMkLxJGFOGCoSrAiFOcYGPwARLhgsiBT8GE4QwK1jJ8Sk4S2mDMkQlmYA3OofP0YfeWVh32vqwhnO398bBpotwEexgDrOZa9uh1REunXnXoeujDinvet8FuPcaLnUf_WdmM7bVh_E5OGl0m9zFb52C1_u7l9ljUT89LGa3dWFoSfr8FFsRKqhjvGKWIyZthe1KasmFkY6bqpSkXHFujRWUOsFyQ0rkGmO5bBydgqvRdxe7j8GlXm26IYZ8UhFSlogzJkRWkVFlYpdSdI3aRb_V8UthpA4ZqjFDlTNUPxkqnCE6QimLw9rFP-t_qG-j_nQz</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Truesdell, S. L.</creator><creator>George, E. L.</creator><creator>Seno, C. E.</creator><creator>Saunders, M. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7506-2335</orcidid></search><sort><creationdate>20191001</creationdate><title>3D Printed Loading Device for Inducing Cellular Mechanotransduction via Matrix Deformation</title><author>Truesdell, S. L. ; George, E. L. ; Seno, C. E. ; Saunders, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-484b2363e4594d5047d91db7a756c7e5c98728b55dcd633e64dcd280efcd57fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autoclaving</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Characterization and Evaluation of Materials</topic><topic>Control</topic><topic>Deformation</topic><topic>Dynamical Systems</topic><topic>Elastomers</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Lactic acid</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Polydimethylsiloxane</topic><topic>Solid Mechanics</topic><topic>Substrates</topic><topic>Three dimensional printing</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truesdell, S. L.</creatorcontrib><creatorcontrib>George, E. L.</creatorcontrib><creatorcontrib>Seno, C. E.</creatorcontrib><creatorcontrib>Saunders, M. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Experimental mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truesdell, S. L.</au><au>George, E. L.</au><au>Seno, C. E.</au><au>Saunders, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printed Loading Device for Inducing Cellular Mechanotransduction via Matrix Deformation</atitle><jtitle>Experimental mechanics</jtitle><stitle>Exp Mech</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>59</volume><issue>8</issue><spage>1223</spage><epage>1232</epage><pages>1223-1232</pages><issn>0014-4851</issn><eissn>1741-2765</eissn><abstract>This manuscript details the design, fabrication, characterization, and application of a 3D printed loading device for the investigation of cellular mechanotransduction pathways activated by matrix deformation. The device, which works as a screw jack, applies out-of-plane substrate distention to a thin polymer membrane via platen displacement. Load induces a strain gradient on the top surface of the membrane where cells are cultured. A high performance poly-lactic acid 3D filament was used for printing, resulting in a compact, cost-effective device that is fully autoclavable and compatible with standard laboratory incubators. The device was customized to accommodate a loadable polydimethylsiloxane chip developed in our lab for culturing MLO-Y4 osteocytes; however, the design can be easily adapted to load any mechanosensitive cells grown on an elastomeric membrane. Using finite element analysis, we demonstrated that the device can generate a range of strains to induce a variety of responses by the osteocytes. Cell viability data demonstrated that these ranges had the ability to engender load-induced apoptotic differences.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11340-019-00531-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7506-2335</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0014-4851
ispartof Experimental mechanics, 2019-10, Vol.59 (8), p.1223-1232
issn 0014-4851
1741-2765
language eng
recordid cdi_proquest_journals_2288054466
source SpringerLink Journals
subjects Autoclaving
Biomedical Engineering and Bioengineering
Biomedical materials
Characterization and Evaluation of Materials
Control
Deformation
Dynamical Systems
Elastomers
Engineering
Finite element method
Lactic acid
Lasers
Optical Devices
Optics
Photonics
Polydimethylsiloxane
Solid Mechanics
Substrates
Three dimensional printing
Vibration
title 3D Printed Loading Device for Inducing Cellular Mechanotransduction via Matrix Deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printed%20Loading%20Device%20for%20Inducing%20Cellular%20Mechanotransduction%20via%20Matrix%20Deformation&rft.jtitle=Experimental%20mechanics&rft.au=Truesdell,%20S.%20L.&rft.date=2019-10-01&rft.volume=59&rft.issue=8&rft.spage=1223&rft.epage=1232&rft.pages=1223-1232&rft.issn=0014-4851&rft.eissn=1741-2765&rft_id=info:doi/10.1007/s11340-019-00531-1&rft_dat=%3Cproquest_cross%3E2288054466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288054466&rft_id=info:pmid/&rfr_iscdi=true