3D Printed Loading Device for Inducing Cellular Mechanotransduction via Matrix Deformation
This manuscript details the design, fabrication, characterization, and application of a 3D printed loading device for the investigation of cellular mechanotransduction pathways activated by matrix deformation. The device, which works as a screw jack, applies out-of-plane substrate distention to a th...
Gespeichert in:
Veröffentlicht in: | Experimental mechanics 2019-10, Vol.59 (8), p.1223-1232 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1232 |
---|---|
container_issue | 8 |
container_start_page | 1223 |
container_title | Experimental mechanics |
container_volume | 59 |
creator | Truesdell, S. L. George, E. L. Seno, C. E. Saunders, M. M. |
description | This manuscript details the design, fabrication, characterization, and application of a 3D printed loading device for the investigation of cellular mechanotransduction pathways activated by matrix deformation. The device, which works as a screw jack, applies out-of-plane substrate distention to a thin polymer membrane via platen displacement. Load induces a strain gradient on the top surface of the membrane where cells are cultured. A high performance poly-lactic acid 3D filament was used for printing, resulting in a compact, cost-effective device that is fully autoclavable and compatible with standard laboratory incubators. The device was customized to accommodate a loadable polydimethylsiloxane chip developed in our lab for culturing MLO-Y4 osteocytes; however, the design can be easily adapted to load any mechanosensitive cells grown on an elastomeric membrane. Using finite element analysis, we demonstrated that the device can generate a range of strains to induce a variety of responses by the osteocytes. Cell viability data demonstrated that these ranges had the ability to engender load-induced apoptotic differences. |
doi_str_mv | 10.1007/s11340-019-00531-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2288054466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288054466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-484b2363e4594d5047d91db7a756c7e5c98728b55dcd633e64dcd280efcd57fe3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ747WSJWh6VUsECNmws13aKq9QpdlLB3-MSJHasZjRzz53RBeASo2uMkLxJGFOGCoSrAiFOcYGPwARLhgsiBT8GE4QwK1jJ8Sk4S2mDMkQlmYA3OofP0YfeWVh32vqwhnO398bBpotwEexgDrOZa9uh1REunXnXoeujDinvet8FuPcaLnUf_WdmM7bVh_E5OGl0m9zFb52C1_u7l9ljUT89LGa3dWFoSfr8FFsRKqhjvGKWIyZthe1KasmFkY6bqpSkXHFujRWUOsFyQ0rkGmO5bBydgqvRdxe7j8GlXm26IYZ8UhFSlogzJkRWkVFlYpdSdI3aRb_V8UthpA4ZqjFDlTNUPxkqnCE6QimLw9rFP-t_qG-j_nQz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288054466</pqid></control><display><type>article</type><title>3D Printed Loading Device for Inducing Cellular Mechanotransduction via Matrix Deformation</title><source>SpringerLink Journals</source><creator>Truesdell, S. L. ; George, E. L. ; Seno, C. E. ; Saunders, M. M.</creator><creatorcontrib>Truesdell, S. L. ; George, E. L. ; Seno, C. E. ; Saunders, M. M.</creatorcontrib><description>This manuscript details the design, fabrication, characterization, and application of a 3D printed loading device for the investigation of cellular mechanotransduction pathways activated by matrix deformation. The device, which works as a screw jack, applies out-of-plane substrate distention to a thin polymer membrane via platen displacement. Load induces a strain gradient on the top surface of the membrane where cells are cultured. A high performance poly-lactic acid 3D filament was used for printing, resulting in a compact, cost-effective device that is fully autoclavable and compatible with standard laboratory incubators. The device was customized to accommodate a loadable polydimethylsiloxane chip developed in our lab for culturing MLO-Y4 osteocytes; however, the design can be easily adapted to load any mechanosensitive cells grown on an elastomeric membrane. Using finite element analysis, we demonstrated that the device can generate a range of strains to induce a variety of responses by the osteocytes. Cell viability data demonstrated that these ranges had the ability to engender load-induced apoptotic differences.</description><identifier>ISSN: 0014-4851</identifier><identifier>EISSN: 1741-2765</identifier><identifier>DOI: 10.1007/s11340-019-00531-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Autoclaving ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Characterization and Evaluation of Materials ; Control ; Deformation ; Dynamical Systems ; Elastomers ; Engineering ; Finite element method ; Lactic acid ; Lasers ; Optical Devices ; Optics ; Photonics ; Polydimethylsiloxane ; Solid Mechanics ; Substrates ; Three dimensional printing ; Vibration</subject><ispartof>Experimental mechanics, 2019-10, Vol.59 (8), p.1223-1232</ispartof><rights>Society for Experimental Mechanics 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-484b2363e4594d5047d91db7a756c7e5c98728b55dcd633e64dcd280efcd57fe3</citedby><cites>FETCH-LOGICAL-c382t-484b2363e4594d5047d91db7a756c7e5c98728b55dcd633e64dcd280efcd57fe3</cites><orcidid>0000-0001-7506-2335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11340-019-00531-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11340-019-00531-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Truesdell, S. L.</creatorcontrib><creatorcontrib>George, E. L.</creatorcontrib><creatorcontrib>Seno, C. E.</creatorcontrib><creatorcontrib>Saunders, M. M.</creatorcontrib><title>3D Printed Loading Device for Inducing Cellular Mechanotransduction via Matrix Deformation</title><title>Experimental mechanics</title><addtitle>Exp Mech</addtitle><description>This manuscript details the design, fabrication, characterization, and application of a 3D printed loading device for the investigation of cellular mechanotransduction pathways activated by matrix deformation. The device, which works as a screw jack, applies out-of-plane substrate distention to a thin polymer membrane via platen displacement. Load induces a strain gradient on the top surface of the membrane where cells are cultured. A high performance poly-lactic acid 3D filament was used for printing, resulting in a compact, cost-effective device that is fully autoclavable and compatible with standard laboratory incubators. The device was customized to accommodate a loadable polydimethylsiloxane chip developed in our lab for culturing MLO-Y4 osteocytes; however, the design can be easily adapted to load any mechanosensitive cells grown on an elastomeric membrane. Using finite element analysis, we demonstrated that the device can generate a range of strains to induce a variety of responses by the osteocytes. Cell viability data demonstrated that these ranges had the ability to engender load-induced apoptotic differences.</description><subject>Autoclaving</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Characterization and Evaluation of Materials</subject><subject>Control</subject><subject>Deformation</subject><subject>Dynamical Systems</subject><subject>Elastomers</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Lactic acid</subject><subject>Lasers</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Polydimethylsiloxane</subject><subject>Solid Mechanics</subject><subject>Substrates</subject><subject>Three dimensional printing</subject><subject>Vibration</subject><issn>0014-4851</issn><issn>1741-2765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ747WSJWh6VUsECNmws13aKq9QpdlLB3-MSJHasZjRzz53RBeASo2uMkLxJGFOGCoSrAiFOcYGPwARLhgsiBT8GE4QwK1jJ8Sk4S2mDMkQlmYA3OofP0YfeWVh32vqwhnO398bBpotwEexgDrOZa9uh1REunXnXoeujDinvet8FuPcaLnUf_WdmM7bVh_E5OGl0m9zFb52C1_u7l9ljUT89LGa3dWFoSfr8FFsRKqhjvGKWIyZthe1KasmFkY6bqpSkXHFujRWUOsFyQ0rkGmO5bBydgqvRdxe7j8GlXm26IYZ8UhFSlogzJkRWkVFlYpdSdI3aRb_V8UthpA4ZqjFDlTNUPxkqnCE6QimLw9rFP-t_qG-j_nQz</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Truesdell, S. L.</creator><creator>George, E. L.</creator><creator>Seno, C. E.</creator><creator>Saunders, M. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7506-2335</orcidid></search><sort><creationdate>20191001</creationdate><title>3D Printed Loading Device for Inducing Cellular Mechanotransduction via Matrix Deformation</title><author>Truesdell, S. L. ; George, E. L. ; Seno, C. E. ; Saunders, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-484b2363e4594d5047d91db7a756c7e5c98728b55dcd633e64dcd280efcd57fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autoclaving</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Characterization and Evaluation of Materials</topic><topic>Control</topic><topic>Deformation</topic><topic>Dynamical Systems</topic><topic>Elastomers</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Lactic acid</topic><topic>Lasers</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Polydimethylsiloxane</topic><topic>Solid Mechanics</topic><topic>Substrates</topic><topic>Three dimensional printing</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Truesdell, S. L.</creatorcontrib><creatorcontrib>George, E. L.</creatorcontrib><creatorcontrib>Seno, C. E.</creatorcontrib><creatorcontrib>Saunders, M. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Experimental mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Truesdell, S. L.</au><au>George, E. L.</au><au>Seno, C. E.</au><au>Saunders, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printed Loading Device for Inducing Cellular Mechanotransduction via Matrix Deformation</atitle><jtitle>Experimental mechanics</jtitle><stitle>Exp Mech</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>59</volume><issue>8</issue><spage>1223</spage><epage>1232</epage><pages>1223-1232</pages><issn>0014-4851</issn><eissn>1741-2765</eissn><abstract>This manuscript details the design, fabrication, characterization, and application of a 3D printed loading device for the investigation of cellular mechanotransduction pathways activated by matrix deformation. The device, which works as a screw jack, applies out-of-plane substrate distention to a thin polymer membrane via platen displacement. Load induces a strain gradient on the top surface of the membrane where cells are cultured. A high performance poly-lactic acid 3D filament was used for printing, resulting in a compact, cost-effective device that is fully autoclavable and compatible with standard laboratory incubators. The device was customized to accommodate a loadable polydimethylsiloxane chip developed in our lab for culturing MLO-Y4 osteocytes; however, the design can be easily adapted to load any mechanosensitive cells grown on an elastomeric membrane. Using finite element analysis, we demonstrated that the device can generate a range of strains to induce a variety of responses by the osteocytes. Cell viability data demonstrated that these ranges had the ability to engender load-induced apoptotic differences.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11340-019-00531-1</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7506-2335</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4851 |
ispartof | Experimental mechanics, 2019-10, Vol.59 (8), p.1223-1232 |
issn | 0014-4851 1741-2765 |
language | eng |
recordid | cdi_proquest_journals_2288054466 |
source | SpringerLink Journals |
subjects | Autoclaving Biomedical Engineering and Bioengineering Biomedical materials Characterization and Evaluation of Materials Control Deformation Dynamical Systems Elastomers Engineering Finite element method Lactic acid Lasers Optical Devices Optics Photonics Polydimethylsiloxane Solid Mechanics Substrates Three dimensional printing Vibration |
title | 3D Printed Loading Device for Inducing Cellular Mechanotransduction via Matrix Deformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printed%20Loading%20Device%20for%20Inducing%20Cellular%20Mechanotransduction%20via%20Matrix%20Deformation&rft.jtitle=Experimental%20mechanics&rft.au=Truesdell,%20S.%20L.&rft.date=2019-10-01&rft.volume=59&rft.issue=8&rft.spage=1223&rft.epage=1232&rft.pages=1223-1232&rft.issn=0014-4851&rft.eissn=1741-2765&rft_id=info:doi/10.1007/s11340-019-00531-1&rft_dat=%3Cproquest_cross%3E2288054466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288054466&rft_id=info:pmid/&rfr_iscdi=true |